当前位置: 首页 > news >正文

爬虫经典案例之爬取豆瓣电影Top250(方法二)

在上一篇文章的基础上,改进了代码质量,增加了多个正则表达式匹配,但同事也增加了程序执行的耗时。

from bs4 import BeautifulSoup
import requests
import time
import re
from random import randint
import pandas as pdurl_list = ['https://movie.douban.com/top250']
base_url = 'https://movie.douban.com/top250?start={start}'
for start in range(25, 251, 25):url_list.append(base_url.format(start=start))headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36 Edg/124.0.0.0'}
movie_info = []def parse_info(info):# 尝试第一个正则表达式pattern1 = re.compile(r"导演: (.*?)\s*/?\s*主演: (.*?)\s*(\d{4})\s*/\s*(.*?)\s*/\s*(.*)")match1 = re.search(pattern1, info)if match1:director = match1.group(1).strip()actors = match1.group(2).strip()year = match1.group(3).strip()countries = match1.group(4).strip().split(' ')genres = match1.group(5).strip().split(' ')return director, actors, year, countries, genres# 尝试第二个正则表达式pattern2 = re.compile(r"导演: (.*?)\s*/?\s*(\d{4})\s*/\s*(.*?)\s*/\s*(.*)")match2 = re.search(pattern2, info)if match2:director = match2.group(1).strip()actors = ""year = match2.group(2).strip()countries = match2.group(3).strip().split(' ')genres = match2.group(4).strip().split(' ')return director, actors, year, countries, genres# 尝试第三个正则表达式pattern3 = re.compile(r"导演: (.*?)\s*(\d{4})\s*/\s*(.*?)\s*/\s*(.*)")match3 = re.search(pattern3, info)if match3:director = match3.group(1).strip()actors = ""year = match3.group(2).strip()countries = match3.group(3).strip().split(' ')genres = match3.group(4).strip().split(' ')return director, actors, year, countries, genres# 尝试第四个正则表达式 (处理有多个年份的情况)pattern4 = re.compile(r"导演: (.*?)\s*主演: (.*?)\s*(.*?)\s*/\s*(.*?)\s*/\s*(.*)")match4 = re.search(pattern4, info)if match4:director = match4.group(1).strip()actors = match4.group(2).strip()year = match4.group(3).strip()countries = match4.group(4).strip().split(' ')genres = match4.group(5).strip().split(' ')return director, actors, year, countries, genres# 如果没有匹配,返回空值return "", "", "", [], []for url in url_list:time.sleep(randint(1, 3))response = requests.get(url, headers=headers)soup = BeautifulSoup(response.text, 'html.parser')movie_items = soup.find_all('div', class_='item')for movie in movie_items:# 获取排名rank = movie.find('em').text.strip()# 获取电影标题title = movie.find('span', class_='title').text.strip()# 获取电影导演、演员、年份、上映地区等信息info = movie.find('div', class_='bd').find('p').text.strip()# 解析 info 字符串director, actors, year, countries, genres = parse_info(info)# 打印未匹配到的 infoif director == "" and actors == "" and year == "":print(f"未匹配到的info: {info}")# 获取评分信息rating_num = movie.find('span', class_='rating_num').text.strip()# 获取评价人数信息rate_people_num = movie.find('div', class_='star').find_all('span')[3].text.strip()# 将信息进行汇总mock_data = {'排名': rank,'电影名称': title,'导演': director,'演员': actors,'上映年份': year,'上映地区': countries,'电影类型': genres,'评分': rating_num,'投票人数': rate_people_num}movie_info.append(mock_data)df = pd.DataFrame(movie_info,columns=['排名', '电影名称', '导演', '演员', '上映年份', '上映地区', '电影类型', '评分', '投票人数'])
excel_path = 'movie_info.xlsx'
df.to_excel(excel_path, index=False)

相关文章:

爬虫经典案例之爬取豆瓣电影Top250(方法二)

在上一篇文章的基础上,改进了代码质量,增加了多个正则表达式匹配,但同事也增加了程序执行的耗时。 from bs4 import BeautifulSoup import requests import time import re from random import randint import pandas as pdurl_list [https…...

如何优化React应用的性能?

优化React应用的性能是一个多方面的过程,涉及到代码的编写、组件的设计、资源的管理等多个层面。以下是一些常见的性能优化策略: 避免不必要的渲染: 使用React.memo、useMemo和useCallback来避免组件或其子组件不必要的重新渲染。 代码分割: 使用React.…...

css文字镂空加描边

css文字镂空加描边 <!DOCTYPE html> <html><head><meta charset"utf-8"><title>文字镂空</title><style>/* 公用样式 */html,body{width: 100%;height: 100%;position: relative;}/* html{overflow-y: scroll;} */*{margi…...

python数据分析与可视化

Python 在数据分析和可视化方面有着广泛的应用,并且拥有众多强大的库和工具来支持这些任务。以下是一些常用的 Python 库和它们的主要用途: 数据分析 Pandas: Pandas 是 Python 中用于数据处理和分析的主要库。 它提供了数据框(DataFrame)和序列(Series)两种数据结构…...

webkit 的介绍

WebKit 是一个开源的网页浏览器引擎&#xff0c;它是 Safari 浏览器和许多其他应用程序的基础。WebKit 最初由苹果公司开发&#xff0c;并在2005年作为开源项目发布。WebKit 的核心组件包括 WebCore 和 JavaScriptCore。以下是 WebKit 的详细介绍&#xff1a; ### WebKit 的主…...

make与makefile

目录 一、make的默认目标文件与自动推导 二、不能连续make的原因 执行原理 touch .PHONY伪目标 make指令不回显 makefile多文件管理 简写依赖方法 三、回车与换行 四、缓冲区 一、make的默认目标文件与自动推导 假设这是一个makefile文件&#xff0c;make的时候默认生…...

深度神经网络一

文章目录 深度神经网络 (DNN)1. 概述2. 基本概念3. 网络结构 深度神经网络的层次结构详细讲解1. 输入层&#xff08;Input Layer&#xff09;2. 隐藏层&#xff08;Hidden Layers&#xff09;3. 输出层&#xff08;Output Layer&#xff09;整体流程深度神经网络的优点深度神经…...

Pnpm:包管理的新星,如何颠覆 Npm 和 Yarn

在探索现代 JavaScript 生态系统时&#xff0c;我们常常会遇到新兴技术的快速迭代和改进。其中&#xff0c;包管理工具的发展尤为重要&#xff0c;因为它们直接影响开发效率和项目性能。最近&#xff0c;pnpm 作为一种新的包管理工具引起了广泛关注。它不仅挑战了传统工具如 np…...

汽车IVI中控开发入门及进阶(三十二):i.MX linux开发之Yocto

前言: 对于NXP的i.mx,如果基于linux开发,需要熟悉以下文档: IMX_YOCTO_PROJECT_USERS_GUIDE.pdf IMX_LINUX_USERS_GUIDE.pdf IMX_GRAPHICS_USERS_GUIDE.pdf 如果基于android开发,需要熟悉一下文档: Android_Auto_Quick_Start_Guide.pdf ANDROID_USERS_GUIDE.pdf …...

tessy 编译报错:单元测试时,普通桩函数内容相关异常场景

目录 1&#xff0c;失败现象 2&#xff0c;原因分析 1&#xff0c;失败现象 1&#xff0c;在 step 桩函数正常的情况下报错。 2&#xff0c;测试代码执行的数据流 和 step 桩函数内容不一致。 2&#xff0c;原因分析 桩函数分为 test object, test case, test step 三种类别。…...

计算机专业是否仍是“万金油”

作为一名即将参加高考的学生&#xff0c;我站在人生的分岔路口上&#xff0c;面临着选择大学专业的重大抉择。在这个关键节点&#xff0c;计算机相关专业是否仍是炙手可热的选择&#xff1f;  首先&#xff0c;从行业的角度来看&#xff0c;计算机相关专业确实在近年来持续火…...

雷池社区版自动SSL

正常安装雷池&#xff0c;并配置站点&#xff0c;暂时不配置ssl 不使用雷池自带的证书申请。 安装&#xff08;acme.sh&#xff09;&#xff0c;使用域名验证方式生成证书 先安装git yum install git 或者 apt-get install git 安装完成后使用 git clone https://gitee.com/n…...

怎样减少徐州服务器租用的成本?

服务器租用的出现&#xff0c;十分便于网络行业的发展&#xff0c;但是随着服务器租用的广泛应用&#xff0c;整体还是有着一定的成本的吗&#xff0c;不同的服务器类型在价格方面也是不同的&#xff0c;那么企业在选择服务器租用后&#xff0c;怎样才能减少服务器租用的成本呢…...

【性能优化】表分桶实践最佳案例

分桶背景 随着企业的数据不断增长&#xff0c;数据的分布和访问模式变得越来越复杂。我们前面介绍了如何通过对表进行分区来提高查询效率&#xff0c;但对于某些特定的查询模式&#xff0c;特别是需要频繁地进行数据联接查或取样的场景&#xff0c;仍然可能面临性能瓶颈。此外…...

数据仓库的挑战

建设数据仓库是一个复杂且资源密集的过程&#xff0c;需要考虑多个方面。以下是建设数据仓库时常见的挑战及其详细解释&#xff1a; 1. 数据集成 挑战&#xff1a; 数据来源多样&#xff1a;数据来自不同的系统、数据库、文件格式&#xff08;如CSV、JSON、XML&#xff09;、…...

基于ResNet-18的简单分类(新手,而且网络效果不咋滴,就是学个流程)

引言 先看问题&#xff1a; 我手边有一数据集&#xff0c;然后我想分分类&#xff01;~~ 咳咳&#xff0c;最近刚做了一个&#xff1a;训练集有1143张&#xff0c;分为5类&#xff0c;里面图片是打乱的。测试集有248张&#xff0c;想把它分分类看看咋样。 再看一下效果: …...

自动化测试:Autorunner的使用

自动化测试&#xff1a;Autorunner的使用 一、实验目的 1、掌握自动化测试脚本的概念。 2、初步掌握Autorunner的使用 二、Autorunner的简单使用 autoRunner使用方法 新建项目 a) 在项目管理器空白区域,右键鼠标,选择新建项目 b) 输入项目名后,点击[确定]. 在初次打开aut…...

时序预测 | Matlab基于CNN-BiLSTM-Attention多变量时间序列多步预测

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于CNN-BiLSTM-Attention多变量时间序列多步预测&#xff1b; 2.多变量时间序列数据集&#xff08;负荷数据集&#xff09;&#xff0c;采用前96个时刻预测的特征和负荷数据预测未来96个时刻的负荷数据&…...

软考 系统架构设计师系列知识点之杂项集萃(42)

接前一篇文章&#xff1a;软考 系统架构设计师系列知识点之杂项集萃&#xff08;41&#xff09; 第67题 Windows操作系统在图形界面处理方面采用的核心架构风格是&#xff08; &#xff09;风格。Java语言宣传的“一次编写&#xff0c;到处运行”的特性&#xff0c;从架构风格…...

FastBoot刷机获取root权限(Magisk)

1.首先要下载ADB、Fastboot等工具。 1.ADB、Fastboot工具 https://developer.android.com/studio/releases/platform-tools 2.安装FastBoot的USB驱动 https://developer.android.com/studio/run/oem-usb 2.下载对应的镜像 https://developers.google.com/android/images?…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...