Pipeline知识小记
在scikit-learn(通常缩写为sklearn)中,Pipeline是一个非常重要的工具,它允许你将多个数据转换步骤(如特征选择、缩放等)和估计器(如分类器、回归器等)组合成一个单一的估计器对象。这种组合使得数据预处理和模型训练变得更加简洁和高效。
使用Pipeline的主要好处包括:
- 简化工作流:你可以在一个对象中定义整个数据处理和建模流程。
- 避免数据泄露:在交叉验证或其他评估过程中,
Pipeline会确保每一步都是单独地应用于每个训练/测试分割,从而避免数据泄露。 - 易于使用:你可以像使用任何其他
sklearn估计器一样使用Pipeline,包括fit、predict、score等方法。
下面是一个简单的示例,展示了如何使用Pipeline将特征缩放(使用StandardScaler)和逻辑回归(使用LogisticRegression)组合在一起:
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split# 加载数据集
iris = load_iris()
X, y = iris.data, iris.target
#X,y = load_iris(return_X_y=True)# 划分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建Pipeline
steps = [('scaler', StandardScaler()),('logistic', LogisticRegression(max_iter=1000, solver='lbfgs'))
]
pipeline = Pipeline(steps)# 使用Pipeline进行训练
pipeline.fit(X_train, y_train)# 使用Pipeline进行预测
predictions = pipeline.predict(X_test)# 评估Pipeline的性能
score = pipeline.score(X_test, y_test)
print(f"Accuracy: {score}")
在这个示例中,我们首先加载了鸢尾花数据集,并将其划分为训练集和测试集。然后,我们定义了一个包含两个步骤的Pipeline:scaler(使用StandardScaler进行特征缩放)和logistic(使用LogisticRegression进行分类)。最后,我们使用Pipeline进行训练、预测和评估。
相关文章:
Pipeline知识小记
在scikit-learn(通常缩写为sklearn)中,Pipeline是一个非常重要的工具,它允许你将多个数据转换步骤(如特征选择、缩放等)和估计器(如分类器、回归器等)组合成一个单一的估计器对象。这…...
postman国内外竞争者及使用详解分析
一、postman简介 Postman 是一款广泛使用的 API 开发和测试工具,适用于开发人员和测试人员。它提供了一个直观的界面,用于发送 HTTP 请求、查看响应、创建和管理 API 测试用例,以及自动化 API 测试工作流程。以下是 Postman 的主要功能和特点…...
人工智能对决:ChatGLM与ChatGPT,探索发展历程
图: a robot is writing code on a horse, By 禅与计算机程序设计艺术 目录 ChatGLM:...
探索Python元类的奥秘及其应用场景
探索Python元类的奥秘及其应用场景 一、引言 在Python中,元类(Metaclasses)是一个相对高级且容易被忽视的主题。然而,对于深入理解Python的面向对象编程模型以及进行高级框架和库的设计来说,元类是一个不可或缺的工具…...
C语言基础关键字的含义和使用方法
关键字在C语言中扮演着非常重要的角色,它们定义了语言的基本构造和语法规则,通过使用关键字,开发者可以创建变量、定义数据类型、控制程序流程(如循环和条件判断)、声明函数等。由于这些字是保留的,所以编…...
【Golang - 90天从新手到大师】Day09 - string
系列文章合集 Golang - 90天从新手到大师 String 一个字符串是一个不可改变的字节序列。字符串可以包含任意的数据,但是通常是用来包含人类可读的文本。 len()返回字符串字节数目(不是rune数)。 通过索引可以访问某个字节值,0…...
网络安全与区块链技术:信任与安全的融合
# 网络安全与区块链技术:信任与安全的融合 在网络空间,信任是一种宝贵而稀缺的资源。区块链技术以其独特的分布式账本、加密算法和共识机制,为构建网络安全提供了新的解决方案。本文将探讨网络安全与区块链技术如何融合,以增强信…...
MySQL之复制(九)
复制 复制管理和维护 确定主备是否一致 在理想情况下,备库和主库的数据应该是完全一样的。但事实上备库可能发生错误并导致数据不一致。即使没有明显的错误,备库同样可能因为MySQL自身的特性导致数据不一致,例如MySQL的Bug、网络中断、服务…...
【面试干货】 Java 中的 HashSet 底层实现
【面试干货】 Java 中的 HashSet 底层实现 1、HashSet 的底层实现2、 HashSet 的特点3、 总结 💖The Begin💖点点关注,收藏不迷路💖 HashSet 是 Java 集合框架中的一个重要成员,它提供了不存储重复元素的集合。但是&am…...
爬虫经典案例之爬取豆瓣电影Top250(方法二)
在上一篇文章的基础上,改进了代码质量,增加了多个正则表达式匹配,但同事也增加了程序执行的耗时。 from bs4 import BeautifulSoup import requests import time import re from random import randint import pandas as pdurl_list [https…...
如何优化React应用的性能?
优化React应用的性能是一个多方面的过程,涉及到代码的编写、组件的设计、资源的管理等多个层面。以下是一些常见的性能优化策略: 避免不必要的渲染: 使用React.memo、useMemo和useCallback来避免组件或其子组件不必要的重新渲染。 代码分割: 使用React.…...
css文字镂空加描边
css文字镂空加描边 <!DOCTYPE html> <html><head><meta charset"utf-8"><title>文字镂空</title><style>/* 公用样式 */html,body{width: 100%;height: 100%;position: relative;}/* html{overflow-y: scroll;} */*{margi…...
python数据分析与可视化
Python 在数据分析和可视化方面有着广泛的应用,并且拥有众多强大的库和工具来支持这些任务。以下是一些常用的 Python 库和它们的主要用途: 数据分析 Pandas: Pandas 是 Python 中用于数据处理和分析的主要库。 它提供了数据框(DataFrame)和序列(Series)两种数据结构…...
webkit 的介绍
WebKit 是一个开源的网页浏览器引擎,它是 Safari 浏览器和许多其他应用程序的基础。WebKit 最初由苹果公司开发,并在2005年作为开源项目发布。WebKit 的核心组件包括 WebCore 和 JavaScriptCore。以下是 WebKit 的详细介绍: ### WebKit 的主…...
make与makefile
目录 一、make的默认目标文件与自动推导 二、不能连续make的原因 执行原理 touch .PHONY伪目标 make指令不回显 makefile多文件管理 简写依赖方法 三、回车与换行 四、缓冲区 一、make的默认目标文件与自动推导 假设这是一个makefile文件,make的时候默认生…...
深度神经网络一
文章目录 深度神经网络 (DNN)1. 概述2. 基本概念3. 网络结构 深度神经网络的层次结构详细讲解1. 输入层(Input Layer)2. 隐藏层(Hidden Layers)3. 输出层(Output Layer)整体流程深度神经网络的优点深度神经…...
Pnpm:包管理的新星,如何颠覆 Npm 和 Yarn
在探索现代 JavaScript 生态系统时,我们常常会遇到新兴技术的快速迭代和改进。其中,包管理工具的发展尤为重要,因为它们直接影响开发效率和项目性能。最近,pnpm 作为一种新的包管理工具引起了广泛关注。它不仅挑战了传统工具如 np…...
汽车IVI中控开发入门及进阶(三十二):i.MX linux开发之Yocto
前言: 对于NXP的i.mx,如果基于linux开发,需要熟悉以下文档: IMX_YOCTO_PROJECT_USERS_GUIDE.pdf IMX_LINUX_USERS_GUIDE.pdf IMX_GRAPHICS_USERS_GUIDE.pdf 如果基于android开发,需要熟悉一下文档: Android_Auto_Quick_Start_Guide.pdf ANDROID_USERS_GUIDE.pdf …...
tessy 编译报错:单元测试时,普通桩函数内容相关异常场景
目录 1,失败现象 2,原因分析 1,失败现象 1,在 step 桩函数正常的情况下报错。 2,测试代码执行的数据流 和 step 桩函数内容不一致。 2,原因分析 桩函数分为 test object, test case, test step 三种类别。…...
计算机专业是否仍是“万金油”
作为一名即将参加高考的学生,我站在人生的分岔路口上,面临着选择大学专业的重大抉择。在这个关键节点,计算机相关专业是否仍是炙手可热的选择? 首先,从行业的角度来看,计算机相关专业确实在近年来持续火…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
MyBatis中关于缓存的理解
MyBatis缓存 MyBatis系统当中默认定义两级缓存:一级缓存、二级缓存 默认情况下,只有一级缓存开启(sqlSession级别的缓存)二级缓存需要手动开启配置,需要局域namespace级别的缓存 一级缓存(本地缓存&#…...
高防服务器价格高原因分析
高防服务器的价格较高,主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因: 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器,因此…...
可下载旧版app屏蔽更新的app市场
软件介绍 手机用久了,app越来越臃肿,老手机卡顿成常态。这里给大家推荐个改善老手机使用体验的方法,还能帮我们卸载不需要的app。 手机现状 如今的app不断更新,看似在优化,实则内存占用越来越大,对手机性…...
Springboot多数据源配置实践
Springboot多数据源配置实践 基本配置文件数据库配置Mapper包Model包Service包中业务代码Mapper XML文件在某些复杂的业务场景中,我们可能需要使用多个数据库来存储和管理不同类型的数据,而不是仅仅依赖于单一数据库。本技术文档将详细介绍如何在 Spring Boot 项目中进行多数…...
