动手学深度学习(Pytorch版)代码实践 -卷积神经网络-29残差网络ResNet
29残差网络ResNet

import torch
from torch import nn
from torch.nn import functional as F
import liliPytorch as lp
import matplotlib.pyplot as plt# 定义一个继承自nn.Module的残差块类
class Residual(nn.Module):def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1):super().__init__()# 第一个卷积层,使用3x3的卷积核,填充为1,步幅为指定值self.conv1 = nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)# 第二个卷积层,使用3x3的卷积核,填充为1self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1)# 可选的1x1卷积层,用于匹配输入输出通道数和步幅if use_1x1conv:self.conv3 = nn.Conv2d(input_channels, num_channels, kernel_size=1, stride=strides)else:self.conv3 = None# 批量归一化层self.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)# 为什么需要两个不同的批量归一化层?# 1.不同的位置,不同的输入特征# 2.独立的参数和统计数据def forward(self, X):# 先通过第一个卷积层、批量归一化层和ReLU激活函数Y = F.relu(self.bn1(self.conv1(X)))# 然后通过第二个卷积层和批量归一化层Y = self.bn2(self.conv2(Y))# 如果定义了conv3,则通过conv3调整Xif self.conv3:X = self.conv3(X)# 将输入X加到输出Y上实现残差连接Y += X# 通过ReLU激活函数return F.relu(Y)# 创建一个包含输入和输出形状一致的残差块实例,并测试其输出形状
# blk = Residual(3, 3)
# X = torch.rand(4, 3, 6, 6)
# Y = blk(X)
# print(Y.shape) # 预期输出形状:torch.Size([4, 3, 6, 6])# 创建一个包含1x1卷积和步幅为2的残差块实例,并测试其输出形状
# blk = Residual(3, 6, use_1x1conv=True, strides=2)
# print(blk(X).shape) # 预期输出形状:torch.Size([4, 6, 3, 3])# 定义一个包含初始卷积层、批量归一化层、ReLU激活函数和最大池化层的顺序容器
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),nn.BatchNorm2d(64),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)# 定义一个函数,用于创建由多个残差块组成的模块
def resnet_block(input_channels, num_channels, num_residuals, first_block=False):blk = []for i in range(num_residuals):# 如果是第一个残差块且不是第一个模块,则使用1x1卷积和步幅为2if i == 0 and not first_block:blk.append(Residual(input_channels, num_channels, use_1x1conv=True, strides=2))else:blk.append(Residual(num_channels, num_channels))return blk# 创建由残差块组成的各个模块
# *符号有多种用途,但在函数调用时,*符号主要用于将列表或元组解包。
# *resnet_block()的作用是将列表中的元素逐个传递给nn.Sequential
b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))# 创建整个ResNet模型
net = nn.Sequential(b1, b2, b3, b4, b5,nn.AdaptiveAvgPool2d((1, 1)), # 自适应平均池化层nn.Flatten(), # 展平层nn.Linear(512, 176) # 全连接层,输出10类
)# 测试整个网络的输出形状
X = torch.rand(size=(1, 1, 96, 96))
for layer in net:X = layer(X)print(layer.__class__.__name__, 'output shape:\t', X.shape)
# Sequential output shape: torch.Size([1, 64, 24, 24])
# Sequential output shape: torch.Size([1, 64, 24, 24])
# Sequential output shape: torch.Size([1, 128, 12, 12])
# Sequential output shape: torch.Size([1, 256, 6, 6])
# Sequential output shape: torch.Size([1, 512, 3, 3])
# AdaptiveAvgPool2d output shape: torch.Size([1, 512, 1, 1])
# Flatten output shape: torch.Size([1, 512])
# Linear output shape: torch.Size([1, 10])# 设置训练参数
lr, num_epochs, batch_size = 0.05, 10, 256
# 加载训练和测试数据
train_iter, test_iter = lp.loda_data_fashion_mnist(batch_size, resize=96)
# 训练模型
lp.train_ch6(net, train_iter, test_iter, num_epochs, lr, lp.try_gpu())
# 显示训练结果
plt.show()# loss 0.009, train acc 0.998, test acc 0.920
# 2306.3 examples/sec on cuda:0
运行结果:

相关文章:
动手学深度学习(Pytorch版)代码实践 -卷积神经网络-29残差网络ResNet
29残差网络ResNet import torch from torch import nn from torch.nn import functional as F import liliPytorch as lp import matplotlib.pyplot as plt# 定义一个继承自nn.Module的残差块类 class Residual(nn.Module):def __init__(self, input_channels, num_chan…...
解锁音乐潮流:使用TikTok API获取平台音乐信息
一、引言 TikTok,作为全球领先的短视频社交平台,不仅为用户提供了展示自我、分享生活的舞台,还为用户带来了丰富多样的音乐体验。在TikTok上,音乐与视频内容的结合,为用户带来了全新的视听盛宴。对于音乐制作人、品牌…...
基于yolo的物体识别坐标转换
一、模型简介: 1.1、小孔成像模型简图如下:不考虑实际相机中存在的场曲、畸变等问题 相对关系为: 为了表述与研究的方便,我们将像面至于小孔之前,且到小孔的距离仍然是焦距f,这样的模型与原来的小孔模型是等价的 相对关系为: 二、坐标系简介: **世界坐标系(world coo…...
STM32第七课:KQM6600空气质量传感器
文章目录 需求一、KQM6600模块及接线方法二、模块配置流程1.环境2.配置时钟和IO3.配置串口初始化,使能以及中断4.中断函数 三、数据处理四、关键代码总结 需求 能够在串口实时显示当前的VOC(挥发性有机化合物),甲醛和Co2浓度。 …...
任务4.8.4 利用Spark SQL实现分组排行榜
文章目录 1. 任务说明2. 解决思路3. 准备成绩文件4. 采用交互式实现5. 采用Spark项目实战概述:使用Spark SQL实现分组排行榜任务背景任务目标技术选型实现步骤1. 准备数据2. 数据上传至HDFS3. 启动Spark Shell或创建Spark项目4. 读取数据5. 数据转换6. 创建临时视图…...
五线谱与简谱有什么区别 五线谱简谱混排怎么打 吉他谱软件哪个好
五线谱与简谱作为音乐记谱领域的两大主流系统,各自承载着深厚的历史渊源与独特的表现力,并在全球范围内被不同程度地接受和应用。尽管两者都是为了记录音乐作品中的音高和节奏信息,但其内在机制、适用范围以及学习曲线存在显著差别。下面我们…...
[C#][opencvsharp]C#使用opencvsharp进行年龄和性别预测支持视频图片检测
使用 OpenCVSharp 来调用 age_net.caffemodel 和 gender_net.caffemodel 来进行性别和年龄预测涉及几个步骤。以下是一个简化的流程和示例文案: 1. 准备工作 确保你已经安装了 OpenCVSharp 和相关的依赖项。确保你有 age_net.prototxt、age_net.caffemodel、gende…...
pdf拆分,pdf拆分在线使用,pdf拆分多个pdf
在数字化的时代,pdf文件已经成为我们日常办公、学习不可或缺的文档格式。然而,有时候我们可能需要对一个大的pdf文件进行拆分,以方便管理和分享。那么,如何将一个pdf文件拆分成多个pdf呢?本文将为你推荐一种好用的拆分…...
VScode Python debug:hydra.run.dir 写入launch.json
记录一个debug时的经验: VS code extension名称版本Pythonv2024.8.1Python Debuggerv2024.6.0 我配置的project运行 train.py 时需要在 terminal 输入参数 hydra.run.dirxxx 我想用 vscode debug 查看内部代码,按以往的经验需要将args写入launch.json&…...
ExVideo: 提升5倍性能-用于视频合成模型的新型后调谐方法
标题:ExVideo: Extending Video Diffusion Models via Parameter-Efficient Post-Tuning作者: Zhongjie Duan; Wenmeng Zhou; Cen Chen; Yaliang Li; Weining QianDOI: 10.48550/arXiv.2406.14130摘要: Recently, advancements in video synthesis have attracted s…...
laravel Dcat Admin 入门应用(三)Grid 之 Column
Dcat Admin 是一个基于 Laravel-admin 二次开发而成的后台构建工具,只需很少的代码即可构建出一个功能完善的高颜值后台系统。支持页面一键生成 CURD 代码,内置丰富的后台常用组件,开箱即用,让开发者告别冗杂的 HTML 代码。 larav…...
掌握Llama 2分词器:填充、提示格式及更多
目录 简介Llama 2分词器基础为分词器设置填充添加特殊标记使用BOS和EOS标记进行分词定义填充标记训练中使用填充标记高级功能:掩码标记Llama的提示格式结论 简介 在语言模型领域,时间变化迅速。自Llama 2发布已经有几个月了,但关于其分词器…...
pdf合并,pdf合并成一个pdf,pdf合并在线网页版
在处理pdf文件的过程中,有时我们需要将多个pdf文件合并成一个pdf文件。作为一名有着丰富计算机应用经验的技术博主,我将为您详细介绍如何将多个pdf文件合并成一个pdf文件。 pdf合并方法:使用, “轻云处理pdf官网” 打开 “轻云处…...
算法基础--------【图论】
图论(待完善) DFS:和回溯差不多 BFS:进while进行层序遍历 定义: 图论(Graph Theory)是研究图及其相关问题的数学理论。图由节点(顶点)和连接这些节点的边组成。图论的研究范围广泛,涉及路径、…...
x86和x64架构的区别及应用
x86和x64架构的区别及应用 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 在计算机硬件和软件领域,x86和x64是两种常见的处理器架构。它们在计算能…...
2024年度总结:不可错过的隧道IP网站评估推荐
随着网络技术的飞速发展,隧道IP服务成为了许多企业和个人在进行网络活动时的得力助手。作为专业的测评团队,我们经过一整年的深入研究和测试,为大家带来了三款备受瞩目的隧道IP网站推荐——品易HTTP、极光HTTP和一G代理。接下来,我…...
Linux下VSCode的安装和基本使用
应用场景:嵌入式开发。 基本只需要良好的编辑环境,能支持文件搜索和跳转,就挺OK的。 之所以要在Linux下安装,是因为在WIN11上安装后,搜索功能基本废了,咋弄都弄不好,又不方便重装win系统&#x…...
C# 实现websocket双向通信
🎈个人主页:靓仔很忙i 💻B 站主页:👉B站👈 🎉欢迎 👍点赞✍评论⭐收藏 🤗收录专栏:C# 🤝希望本文对您有所裨益,如有不足之处ÿ…...
Spring Boot结合FFmpeg实现视频会议系统视频流处理与优化
在构建高效稳定的视频会议系统时,实时视频流的处理和优化是开发者面临的核心挑战之一。这不仅仅是简单的视频数据传输,更涉及到一系列复杂的技术问题,需要我们深入分析和有效解决。 高并发与实时性要求: 视频会议系统通常需要支持多人同时进行视频通话,这就意味着系统需要…...
扫扫地,搞搞卫生 ≠ 车间5S管理
在制造业的日常运营中,车间管理是一项至关重要的工作,它直接关系到生产效率、产品质量以及员工的工作环境。然而,许多人常常将简单的“扫扫地,搞搞卫生”等同于车间5S管理,这种误解不仅可能导致管理效果不佳࿰…...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
