当前位置: 首页 > news >正文

[深度学习] 图神经网络GNN

图神经网络(Graph Neural Network, GNN)是一类用于处理图结构数据的深度学习模型。图是一种重要的数据结构,广泛应用于社交网络、分子化学、推荐系统、交通网络等领域。GNN的出现使得能够有效地在图结构数据上进行学习和推理。以下是GNN的详细介绍:

一、基本概念

  1. 图(Graph)

    • 一个图由节点(Nodes)和边(Edges)组成。
    • 节点代表实体,边表示节点之间的关系。
  2. 节点特征(Node Features)

    • 每个节点可以有一个特征向量,包含该节点的属性信息。
  3. 边特征(Edge Features)

    • 每条边也可以有一个特征向量,表示该边的属性信息。

二、GNN的工作原理

GNN的基本思想是通过反复地将每个节点的特征向量与其邻居节点的特征向量进行聚合,从而更新节点的表示。这种聚合操作通常分为以下几步:

  1. 消息传递(Message Passing)

    • 每个节点从其邻居节点接收信息(消息)。
    • 这些消息可以通过邻居节点的特征向量以及边特征来计算。
  2. 消息聚合(Message Aggregation)

    • 将接收到的所有邻居节点的信息进行聚合。
    • 聚合操作可以是求和、平均、最大化等。
  3. 节点更新(Node Update)

    • 根据聚合后的信息和当前节点的特征向量,更新该节点的特征向量。
    • 通常使用神经网络(如全连接层)来进行更新。

上述过程会进行多轮迭代,使得节点的表示逐渐融合更多层次的邻居信息。

三、常见的GNN模型

  1. GCN(Graph Convolutional Network)

    • 使用图卷积操作来更新节点特征。
    • 图卷积是一种特殊的消息传递和聚合操作。
  2. GraphSAGE(Graph Sample and Aggregation)

    • 引入采样机制,只采样部分邻居节点进行消息传递,减小计算开销。
    • 支持不同的聚合函数,如平均、LSTM、池化等。
  3. GAT(Graph Attention Network)

    • 使用注意力机制对邻居节点进行加权,学习不同邻居节点的重要性。
    • 动态地调整每个邻居节点的权重。
  4. MPNN(Message Passing Neural Network)

    • 广义的消息传递框架,适用于各种不同类型的图结构和应用场景。

四、应用领域

GNN在许多领域都有广泛的应用,主要包括但不限于:

  1. 社交网络分析

    • 用户推荐、社交关系预测、社区发现等。
  2. 生物信息学

    • 分子属性预测、蛋白质-蛋白质相互作用预测等。
  3. 推荐系统

    • 商品推荐、内容推荐、协同过滤等。
  4. 交通网络

    • 交通流量预测、路线优化等。
  5. 知识图谱

    • 实体关系预测、问答系统等。

五、未来发展方向

GNN仍然是一个活跃的研究领域,未来的研究方向包括:

  1. 更高效的计算方法

    • 设计更高效的GNN模型和算法,处理大规模图数据。
  2. 跨模态学习

    • 将图数据与其他类型的数据(如文本、图像)结合进行学习。
  3. 图生成和图变分自编码器

    • 生成新的图结构、进行图的对抗生成等。
  4. 图表示学习的解释性

    • 增强GNN模型的可解释性,使得模型的预测结果更容易理解和解释。

相关文章:

[深度学习] 图神经网络GNN

图神经网络(Graph Neural Network, GNN)是一类用于处理图结构数据的深度学习模型。图是一种重要的数据结构,广泛应用于社交网络、分子化学、推荐系统、交通网络等领域。GNN的出现使得能够有效地在图结构数据上进行学习和推理。以下是GNN的详细…...

MATLAB中添加 Git 子模块

目录 更新子模块 对子模块使用提取和合并 使用推送将更改发送到子模块存储库 要重用其他存储库中的代码,可以指定 Git™ 子模块。 要将外部 Git 存储库克隆为子模块,请执行以下操作: 在 MATLAB 当前文件夹浏览器中点击右键,然…...

24级中国科学技术大学843信号与系统考研分数线,中科大843初复试科目,参考书,大纲,真题,苏医工生医电子信息与通信工程。

(上岸难度:★★★★☆,考试大纲、真题、经验帖等考研资讯和资源加群960507167/博睿泽电子信息通信考研咨询:34342183) 一、专业目录及考情分析 说明: ①复试成绩:满分100分。上机满分50分,面试满分150分,复试成绩(上机…...

深入剖析C语言中volatile与register关键字的实战应用与底层原理

引言 C语言以其贴近硬件的特性,赋予了开发者强大的底层控制能力。在众多关键字中,"volatile" 和 "register" 是两个具有特殊意义的关键字,它们直接影响着编译器对程序语句的处理逻辑,从而影响程序的正确性和…...

vue开发网站--关于window.print()调取打印

1.vue点击按钮调取打印 点击按钮&#xff1a; 调取打印该页面&#xff1a; <div click"clickDown()">下载</div>methods: {//下载-调取打印clickDown() {window.print()}, }<style>/* 点击打印的样式 */media print {.clickDown {display: no…...

OJ-选座位

题目描述 要考试了&#xff0c;小明需要去图书馆挑选一个座位来复习。小明需要找到一个位置&#xff0c;这个位置应距离任何已经落座的人尽可能的远&#xff08;即与最近的人的距离尽可能的大&#xff09;。 图书馆的座位为一个N*M的矩阵&#xff0c;N表示总的排数&#xff0…...

【子串】3. 无重复的最长子串

3. 无重复的最长子串 难度&#xff1a;中等难度 力扣地址&#xff1a;https://leetcode.cn/problems/longest-substring-without-repeating-characters/description/ 题目看起来简单&#xff0c;刷起来有好几个坑&#xff0c;特此记录一下&#xff0c;解法比官网的更加简单&…...

Scrapy中爬虫优化技巧分享

scrapy是一个非常有用的python爬虫框架&#xff0c;它可以帮助我们轻松地从不同的网站上获取数据。同时&#xff0c;scrapy也有越来越多的用户在使用它来爬取数据&#xff0c;因此&#xff0c;在使用scrapy的过程中&#xff0c;我们需要考虑如何优化我们的爬虫&#xff0c;以便…...

自然语言处理-BERT处理框架-transformer

目录 1.介绍 2.Transformer 2.1 引言 2.2 传统RNN网络的问题 2.3 整体架构 2.4 Attention 2.5 Self-Attention如何计算 3.multi-headed机制 4. BERT训练方法 1.介绍 BERT&#xff1a;当前主流的解决框架&#xff0c;一站式搞定NLP任务。&#xff08;解决一个NLP任务时的考虑…...

Kafka~消息系列问题解决:消费顺序问题解决、消息丢失问题优化(不能保证100%)

消息消费顺序问题 使用消息队列的过程中经常有业务场景需要严格保证消息的消费顺序&#xff0c;比如我们同时发了 2 个消息&#xff0c;这 2 个消息对应的操作分别对应的数据库操作是&#xff1a; 用户等级升级。根据用户等级下的订单价格 假如这两条消息的消费顺序不一样造…...

如何确保日常安全运维中的数据加密符合等保2.0标准?

等保2.0标准下的数据加密要求 等保2.0标准是中国信息安全等级保护制度的升级版&#xff0c;它对信息系统的安全保护提出了更为严格的要求。在日常安全运维中&#xff0c;确保数据加密符合等保2.0标准&#xff0c;主要涉及以下几个方面&#xff1a; 数据加密技术的选择&#xff…...

下一代的JDK - GraalVM

GraalVM是最近几年Java相关的新技术领域不多的亮点之一&#xff0c; 被称之为革命性的下一代JDK&#xff0c;那么它究竟有什么神奇之处&#xff0c;又为当前的Java开发带来了一些什么样的改变呢&#xff0c;让我们来详细了解下 下一代的JDK 官网对GraalVM的介绍是 “GraalVM 是…...

Java三方库-单元测试

文章目录 Junit注解常用类无参数单测带参数的单测 Junit 主要版本有4和5版本&#xff0c;注解不太一样&#xff0c; 4迁移5参考官方文档 主要记录下常用的一些操作 其他复杂操作见官网 https://junit.org/junit5/docs/current/user-guide/#overview-java-versions 引入5.9…...

p2p、分布式,区块链笔记: libp2p基础

通信密钥 noise::{Keypair, X25519Spec} X25519/Ed25519类似RSA 算法。Noise 用于设计和实现安全通信协议。它允许通信双方在没有预先共享密钥的情况下进行安全的密钥交换&#xff0c;并通过加密和身份验证保护通信内容。libp2p 提供了对 Noise 协议的原生支持&#xff0c;它允…...

企业本地大模型用Ollama+Open WebUI+Stable Diffusion可视化问答及画图

最近在尝试搭建公司内部用户的大模型,可视化回答,并让它能画图出来, 主要包括四块: Ollama 管理和下载各个模型的工具Open WebUI 友好的对话界面Stable Diffusion 绘图工具Docker 部署在容器里,提高效率以上运行环境Win10, Ollama,SD直接装在windows10下, 然后安装Docker…...

Unity学习笔记---调试

使用Log进行调试 使用Debug.Log方法可以将一些运行时信息打印到Console窗口中。 打印时间戳 //获取时间 Debug.Log(DateTime.Now.ToString());//打印毫秒级的时间 Debug.Log(((DateTime.Now.ToUniversalTime().Ticks - 621355968000000000) / 10000) * 0.001); 打印自定义文…...

Py之dashscope:dashscope的简介、安装和使用方法、案例应用之详细攻略

Py之dashscope&#xff1a;dashscope的简介、安装和使用方法、案例应用之详细攻略 目录 dashscope的简介 1、产品的主要特点和优势包括&#xff1a; dashscope的安装和使用方法 1、安装 2、使用方法 dashscope的案例应用 1、通义千问-Max&#xff1a;通义千问2.5系列 2…...

Go使用Gin框架开发的Web程序部署在Linux时,无法绑定监听Ipv4端口

最近有写一部分go语言开发的程序&#xff0c;在部署程序时发现&#xff0c;程序在启动后并没有绑定ipv4的端口&#xff0c;而是直接监听绑定ipv6的端口。 当我用netstat -antup | grep 3601查找我的gin服务启动的端口占用情况的时候发现&#xff0c;我的服务直接绑定了tcp6 &a…...

【图解大数据技术】Hadoop、HDFS、MapReduce、Yarn

【图解大数据技术】Hadoop、HDFS、MapReduce、Yarn HadoopHDFSHDFS架构写文件流程读文件流程 MapReduceMapReduce简介MapReduce整体流程 Yarn Hadoop Hadoop是Apache开源的分布式大数据存储与计算框架&#xff0c;由HDFS、MapReduce、Yarn三部分组成。广义上的Hadoop其实是指H…...

AGPT•intelligence:带你领略全新量化交易的风采

随着金融科技的快速发展&#xff0c;量化交易已经成为了投资领域的热门话题。越来越多的投资者开始关注和使用量化交易软件来进行投资决策。在市场上有许多量化交易软件可供选择。 Delaek&#xff0c;是一位资深的金融科技专家&#xff0c;在 2020年成立一家专注于数字资产量化…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...