Spring Boot中的日志管理最佳实践
Spring Boot中的日志管理最佳实践
大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们来探讨一下在Spring Boot应用中如何有效管理日志,确保系统运行稳定且便于故障排查。
引言
日志是开发和维护应用程序时不可或缺的重要工具。在复杂的Spring Boot应用中,合理的日志管理不仅能帮助开发人员及时发现和解决问题,还能提升系统的运维效率和可维护性。本文将介绍一些Spring Boot中的最佳实践,帮助您优化日志配置并利用日志工具更好地监控和管理应用程序的运行状态。
日志框架选择与配置
在Spring Boot中,常用的日志框架是Logback和Log4j2。这两者都提供了灵活的配置选项和强大的日志功能,可以根据项目需求选择适合的框架。
集成Logback
首先,让我们看看如何在Spring Boot项目中集成Logback,并配置基本的日志输出。
package cn.juwatech.logdemo;import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;@RestController
public class LogController {private static final Logger logger = LoggerFactory.getLogger(LogController.class);@GetMapping("/logdemo")public String logDemo() {logger.debug("This is a debug message");logger.info("This is an info message");logger.warn("This is a warning message");logger.error("This is an error message");return "Logging Demo";}
}
在上面的示例中,我们定义了一个简单的Spring Boot控制器,并使用Logback记录了不同级别的日志信息。
Logback配置文件
创建logback-spring.xml或logback.xml配置文件来定义日志输出格式、级别和目标。
<?xml version="1.0" encoding="UTF-8"?>
<configuration><appender name="CONSOLE" class="ch.qos.logback.core.ConsoleAppender"><encoder><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n</pattern></encoder></appender><root level="info"><appender-ref ref="CONSOLE" /></root>
</configuration>
上述配置中,我们定义了一个控制台输出的Appender,并设置了输出格式和日志级别。
日志级别的使用
在实际开发中,合理使用日志级别能够帮助我们过滤和控制日志的输出量,提升系统的性能和可读性。
- TRACE: 最详细的日志信息,一般用于诊断问题,生产环境中很少使用。
- DEBUG: 详细的处理过程信息,适合开发阶段调试使用。
- INFO: 普通的运行时信息,可以展示应用程序的正常运行状态。
- WARN: 表示潜在的问题,需要开发者关注并可能需要进行修复。
- ERROR: 指出发生的错误或异常情况,可能影响应用程序的正常运行。
集中式日志管理
在微服务架构中,集中式日志管理变得尤为重要。Spring Boot提供了对ELK(Elasticsearch、Logstash、Kibana)等日志管理系统的支持,可以通过日志的集中存储和分析,帮助运维人员快速定位和解决问题。
结语
通过本文的介绍,相信您对Spring Boot中的日志管理有了更深入的理解。合理配置日志框架、使用适当的日志级别以及实现集中式日志管理,不仅可以提升开发效率,还能有效地改善系统的稳定性和可维护性。在实际项目中,根据具体需求和团队规范,灵活应用这些最佳实践,将为您的应用程序带来更好的日志管理体验。
相关文章:
Spring Boot中的日志管理最佳实践
Spring Boot中的日志管理最佳实践 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们来探讨一下在Spring Boot应用中如何有效管理日志,确保系统…...
python基础语法 004-2流程控制- for遍历
1 遍历 1.1 什么是遍历? 可以遍历的元素:字符串、列表、元组、字典、集合字符串是可以进行for 循环。(容器对象,序列)可迭代对象iterable 例子: 1 )、for遍历字符串: name xiao…...
【高考志愿】医学
目录 一、明确职业定位与兴趣 二、选择大学与专业 三、考虑身体条件 四、了解录取规则 五、考虑选科与成绩 六、注意志愿填报策略 七、关注就业前景 八、资深医生的建议 高考志愿填报学医时,考生需要综合考虑多个因素,确保自己能够做出明智的选择…...
音视频开发31 FFmpeg 编码- avcodec_find_encoder和avcodec_find_encoder_by_name
avcodec_find_encoder /** * Find a registered encoder with a matching codec ID. * * param id AVCodecID of the requested encoder * return An encoder if one was found, NULL otherwise. */ AVCodec *avcodec_find_encoder(enum AVCodecID id); 那么这个 AVCodec…...
大模型压缩:基于贝叶斯优化的自适应低秩分解
1.方法 1.1 基于特征的高维空间低秩分解 PCA已经是老朋友了,每次一说主成分都会出现PCA。这篇文章1利用预训练数据的子集作为校准数据集 D c a l { x i } i 1 n \mathcal{D}_{cal}\{x_{i}\}_{i1}^{n} Dcal{xi}i1n,首先用校准数据集的样本协方差…...
【Python函数编程实战】:从基础到进阶,打造代码复用利器
文章目录 🚋前言🚀一、认识函数🌈二、函数定义❤️三、函数调用⭐四、实参与形参💥1. 形式参数🚲2. 实际参数🔥1. 位置参数☔2. 关键字参数🎬3. 默认参数🔥4. 可变数量参数(不定长参…...
ZooKeeper 应用场景深度解析
✨✨谢谢大家捧场,祝屏幕前的小伙伴们每天都有好运相伴左右,一定要天天开心哦!✨✨ 🎈🎈作者主页: 喔的嘛呀🎈🎈 目录 引言 1.…...
动手学深度学习(Pytorch版)代码实践 -计算机视觉-41目标检测数据集
41目标检测数据集 import os import pandas as pd import torch import torchvision import matplotlib.pylab as plt from d2l import torch as d2l# 数据集下载链接 # http://d2l-data.s3-accelerate.amazonaws.com/banana-detection.zip# 读取数据集 #save def read_data_b…...
2.2章节python的变量和常量
在Python中,变量和常量有一些基本的概念和用法,但需要注意的是,Python本身并没有内置的“常量”类型。然而,程序员通常会遵循一种约定,即使用全部大写的变量名来表示常量。 一、变量 在Python中,变量是一…...
豆包文科成绩超了一本线,为什么理科不行?
卡奥斯智能交互引擎是卡奥斯基于海尔近40年工业生产经验积累和卡奥斯7年工业互联网平台建设的最佳实践,基于大语言模型和RAG技术,集合海量工业领域生态资源方优质产品和知识服务,旨在通过智能搜索、连续交互,实时生成个性化的内容…...
Java多线程编程实践中的常见问题与解决方案
Java多线程编程实践中的常见问题与解决方案 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! **1. **引言 Java多线程编程是现代软件开发中不可或缺的一部分&a…...
WebStorm配置路径别名(jsconfig.json)
项目是 ViteVueTs 新建一个 jsconfig.json文件 {"compilerOptions": {"baseUrl": ".","paths": {"/*": ["./src/*"]}},"exclude": ["node_modules", "dist"] }然后在 vite.confi…...
[吃瓜教程]南瓜书第4章决策树
1.决策树的算法原理 从逻辑角度,条件判断语句的组合;从几何角度,根据某种准则划分特征空间; 是一种分治的思想,其最终目的是将样本约分约纯,而划分的核心是在条件的选择或者说是**特征空间的划分标准 ** …...
Redis 面试题完整指南:深度解析基础、进阶与高级功能
基础知识 1. 什么是Redis? Redis(Remote Dictionary Server)是一个开源的、基于内存的数据结构存储系统,既可以用作数据库、缓存,也可以用作消息中间件。它支持多种数据结构,如字符串、哈希、列表、集合、…...
spring 枚举、策略模式、InitializingBean初使化组合使用示例
实现一个简单的文本处理系统。 在这个系统中,我们将定义不同类型的文本处理策略,比如大小写转换、添加前缀后缀等,并使用工厂模式来管理这些策略。 1 定义一个枚举来标识不同的文本处理类型 public enum TextProcessTypeEnum {UPPER_CASE,LO…...
嵌入式学习——硬件(IIC、ADC)——day56
1. IIC 1.1 定义(同步串行半双工通信总线) IIC(Inter-Integrated Circuit)又称I2C,是是IICBus简称,所以中文应该叫集成电路总线。是飞利浦公司在1980年代为了让主板、嵌入式系统或手机用以连接低速周边设备…...
vCenter VXR01405C ALARM Certificate is about to expire
vCenter VXR01405C ALARM Certificate is about to expire 需要更新证书 步骤如下 ===vCenter=== root@vc [ ~ ]# for i in $(/usr/lib/vmware-vmafd/bin/vecs-cli store list); do echo STORE $i; sudo /usr/lib/vmware-vmafd/b STORE MACHINE_SSL_CERT Alias : __MACHINE…...
安装和微调大模型(基于LLaMA-Factory)
打开终端(在Unix或macOS上)或命令提示符/Anaconda Prompt(在Windows上)。 创建一个名为lora的虚拟环境并指定Python版本为3.9。 https://github.com/echonoshy/cgft-llm/blob/master/llama-factory/README.mdGitHub - hiyouga/…...
使用docker搭建squid和ss5
docker run -d --name squid-container -e TZAsia/Shanghai -p 自定义端口并记得开放:3128 ubuntu/squid docker exec -it squid-container /bin/bash apt update && apt install vim # 修改 http_port 3128 为 http_port 0.0.0.0:3128 # 修改 http_access deny all 为…...
大数据面试题之Flink(1)
目录 Flink架构 Flink的窗口了解哪些,都有什么区别,有哪几种?如何定义? Flink窗口函数,时间语义相关的问题 介绍下Flink的watermark(水位线),watermark需要实现哪个实现类,在何处定义?有什么作用? Flink的…...
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...
Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
