【代码随想录训练营】【Day 66】【图论-3】| 卡码 101-104
【代码随想录训练营】【Day 66】【图论-3】| 卡码 101-104
需强化知识点
- 103,104 优化思路
题目
101. 孤岛的总面积
- 此处 area 多余
def dfs(grid, x, y, area):dirs = [[0, 1], [0, -1], [1, 0], [-1, 0]]m, n = len(grid), len(grid[0])area[0] += 1grid[x][y] = 0for add_x, add_y in dirs:next_x, next_y = x + add_x, y + add_yif next_x < 0 or next_x >= m or next_y < 0 or next_y >= n:continueif grid[next_x][next_y]:dfs(grid, next_x, next_y, area)tmp = list(map(int, input().split()))
m, n = tmp[0], tmp[1]
grid = [[0] * n for _ in range(m)]for i in range(m):tmp = list(map(int, input().split()))for j in range(n):grid[i][j] = tmp[j]for i in range(m):if grid[i][0]:dfs(grid, i, 0, [0])if grid[i][n-1]:dfs(grid, i, n-1, [0])for j in range(n):if grid[0][j]:dfs(grid, 0, j, [0])if grid[m-1][j]:dfs(grid, m-1, j, [0])cur = 0
for i in range(m):for j in range(n):if grid[i][j]:cur += 1print(cur)
102. 沉没孤岛
- 思路:从左右上下边界出发遍历,然后visited数组标记,最后 grid 为 1 且没被访问过的,即为孤岛
import collectionsdef bfs(grid, visited, x, y):dirs = [[1, 0], [0, 1], [-1, 0], [0, -1]]m, n = len(grid), len(grid[0])que = collections.deque()que.append([x, y])visited[x][y] = Truewhile que:tmp = que.popleft()cur_x, cur_y = tmp[0], tmp[1]for add_x, add_y in dirs:next_x, next_y = cur_x + add_x, cur_y + add_yif next_x < 0 or next_x >= m or next_y < 0 or next_y >= n:continueif grid[next_x][next_y] and not visited[next_x][next_y]:que.append([next_x, next_y])visited[next_x][next_y] = Truetmp = list(map(int, input().split()))
m, n = tmp[0], tmp[1]
grid = [[0] * n for _ in range(m)]
visited = [[False] * n for _ in range(m)]for i in range(m):tmp = list(map(int, input().split()))for j in range(n):grid[i][j] = tmp[j]for i in range(m):if grid[i][0]:bfs(grid, visited ,i, 0)if grid[i][n-1]:bfs(grid, visited, i, n-1)for j in range(n):if grid[0][j]:bfs(grid, visited, 0, j)if grid[m-1][j]:bfs(grid, visited, m-1, j)for i in range(m):for j in range(n):if grid[i][j] and not visited[i][j]:grid[i][j] = 0for i in range(m):for j in range(n):print(grid[i][j], end=" ")
103. 水流问题
- 暴力法:直接每个位置 dfs,然后根据其最终是否能到达边界位置,返回布尔值
- 优化思路:从边界出发,逆流而上,最终不能被访问到的地方为结果
# def dfs(grid, visited, x, y):
# dirs = [[0, 1], [0, -1], [1, 0], [-1, 0]]# m, n = len(grid), len(grid[0])
# visited[x][y] = True# for add_x, add_y in dirs:
# next_x, next_y = x + add_x, y + add_y
# if next_x < 0 or next_x >= m or next_y < 0 or next_y >= n:
# continue
# if grid[x][y] < grid[next_x][next_y]:
# continue
# if not visited[next_x][next_y]:
# dfs(grid, visited, next_x, next_y)# def isResult(grid, x, y):
# m, n = len(grid), len(grid[0])
# visited = [[False] * n for _ in range(m)]
# dfs(grid, visited, x, y)
# first_result, second_result = False, False# for i in range(m):
# if visited[i][0]:
# first_result = True
# if visited[i][n-1]:
# second_result = True# for j in range(n):
# if visited[0][j]:
# first_result = True
# if visited[m-1][j]:
# second_result = True# return first_result and second_result# tmp = list(map(int, input().split()))
# m, n = tmp[0], tmp[1]# grid = [[0] * n for _ in range(m)]
# for i in range(m):
# tmp = list(map(int, input().split()))
# for j in range(n):
# grid[i][j] = tmp[j]# for i in range(m):
# for j in range(n):
# if isResult(grid, i, j):
# print("{} {}".format(i, j))def dfs(grid, visited, x, y):dirs = [[0, 1], [0, -1], [1, 0], [-1, 0]]m, n = len(grid), len(grid[0])visited[x][y] = Truefor add_x, add_y in dirs:next_x, next_y = x + add_x, y + add_yif next_x < 0 or next_x >= m or next_y < 0 or next_y >= n:continue# 等于不行if grid[x][y] > grid[next_x][next_y]:continueif not visited[next_x][next_y]:dfs(grid, visited, next_x, next_y)tmp = list(map(int, input().split()))
m, n = tmp[0], tmp[1]grid = [[0] * n for _ in range(m)]
for i in range(m):tmp = list(map(int, input().split()))for j in range(n):grid[i][j] = tmp[j] visited_first = [[False]*n for _ in range(m)]
visited_second = [[False]*n for _ in range(m)]for i in range(m):dfs(grid, visited_first, i, 0)dfs(grid, visited_second, i, n-1)for j in range(n):dfs(grid, visited_first, 0, j)dfs(grid, visited_second, m-1, j)for i in range(m):for j in range(n):if visited_first[i][j] and visited_second[i][j]:print("{} {}".format(i, j))
104. 建造最大岛屿
- 暴力法:直接每个为0的位置,dfs,记录其面积
- 优化思路:先记录每个岛屿的面积,并编号,然后 每个为0的位置,假设其为1,然后加上周围能访问到岛屿面积
- 注意周围访问岛屿的去重问题,以及为grid 0的情况
def dfs(grid, mask, x, y, count):dirs = [[0, 1], [0, -1], [1, 0], [-1, 0]]m, n = len(grid), len(grid[0])grid[x][y] = maskcount[0] += 1for add_x, add_y in dirs:next_x, next_y = x + add_x, y + add_yif next_x < 0 or next_x >= m or next_y < 0 or next_y >= n:continueif grid[next_x][next_y] != 1 :continuedfs(grid, mask, next_x, next_y, count)def main():tmp = list(map(int, input().split()))m, n = tmp[0], tmp[1]grid = [[0] * n for _ in range(m)]for i in range(m):tmp = list(map(int, input().split()))for j in range(n):grid[i][j] = tmp[j] mask = 2isAllgrid = TruegridNum = {}for i in range(m):for j in range(n):if grid[i][j] == 0:isAllgrid = Falseif grid[i][j] == 1:count = [0]dfs(grid, mask, i, j, count)gridNum[mask] = count[0]mask += 1if isAllgrid:print(m*n)return result = 0dirs = [[0, 1], [0, -1], [1, 0], [-1, 0]]for i in range(m):for j in range(n):if grid[i][j] == 0:tmp = 1visitedGrid = []for add_x, add_y in dirs:next_x, next_y = i + add_x, j + add_yif next_x < 0 or next_x >= m or next_y < 0 or next_y >= n:continueif grid[next_x][next_y] not in visitedGrid and grid[next_x][next_y] != 0:tmp += gridNum[grid[next_x][next_y]]visitedGrid.append(grid[next_x][next_y])result = max(result, tmp)print(result) main()相关文章:
【代码随想录训练营】【Day 66】【图论-3】| 卡码 101-104
【代码随想录训练营】【Day 66】【图论-3】| 卡码 101-104 需强化知识点 103,104 优化思路 题目 101. 孤岛的总面积 此处 area 多余 def dfs(grid, x, y, area):dirs [[0, 1], [0, -1], [1, 0], [-1, 0]]m, n len(grid), len(grid[0])area[0] 1grid[x][y] …...
【面试系列】C#高频面试题
欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏: ⭐️ 全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题. ⭐️ AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、…...
AI助力校园安全:EasyCVR视频智能技术在校园欺凌中的应用
一、背景分析 近年来,各地深入开展中小学生欺凌行为治理工作,但有的地方学生欺凌事件仍时有发生,严重损害学生身心健康,引发社会广泛关注。为此,教育部制定了《防范中小学生欺凌专项治理行动工作方案》进一步防范和遏…...
Yolov8可视化界面使用说明,含代码
⭐⭐ YOLOv8改进专栏|包含主干、模块、注意力机制、检测头等前沿创新 ⭐⭐ YOLOv8可视化界面如下 使用需要安装opencv-python、torch、numpy及PySide6(python版本>3.9) pip install PySide6 pip install numpy pip install opencv-python 使用说明 运行下方代码…...
怎么使用MarkDown画矩阵
本文首发于公众号“AntDream”,欢迎微信搜索“AntDream”或扫描文章底部二维码关注,和我一起每天进步一点点 今天写文章需要用到矩阵,记录一下 画矩阵需要用到特殊的语法 (1)画普通矩阵,不带括号的 $$be…...
Kafka入门-基础概念及参数
一、Kafka术语 1. Broker Kafka属于分布式的消息引擎系统,它的主要功能是提供一套完备的消息发布与订阅解决方案。可以为每个业务、每个应用甚至是每类数据都创建专属的主题。 Kafka的服务器端由被称为Broker的服务进程构成,即一个Kafka集群由多个Broke…...
Clickhouse 常见操作
数据查询 从json array string中解析字段 json array string 为json.dumps(array(dict)) select JSONExtractString(row,"Date") as Date from( select arrayJoin(JSONExtractArrayRaw(Remarks)) as row from table x )JSONExtractArrayRaw: 将JsonS…...
Docker使用daocloud镜像加速
之前给大家分享的阿里云的镜像加速,今天再给大家分享一个还可以使用的镜像加速地址daocloud。 经过测试速度还是比较快的。 [rootbogon ~]# cat /etc/docker/daemon.json {"registry-mirrors": ["https://docker.m.daocloud.io"] }[rootbogon…...
flink的窗口
目录 窗口分类 1.按照驱动类型分类 1. 时间窗口(Time window) 2.计数窗口(Count window) 2.按照窗口分配数据的规则分类 窗口API分类 API调用 窗口分配器器: 窗口函数 增量聚合函数: 全窗口函数…...
lodash.js 工具库
lodash 是什么? Lodash是一个流行的JavaScript实用工具库,提供了许多高效、高兼容性的工具函数,能够方便地处理集合、字符串、数值、函数等多种数据类型,大大提高工作效率。 lodash官网 文档参见:Lodash Documentation lodash 在Vue中怎么使用? 1、首先安装 lodash np…...
使用ElementUI组件库
引入ElementUI组件库 1.安装插件 npm i element-ui -S 2.引入组件库 import ElementUI from element-ui; 3.引入全部样式 import element-ui/lib/theme-chalk/index.css; 4.使用 Vue.use(ElementUI); 5.在官网寻找所需样式 饿了么组件官网 我这里以button为例 6.在组件中使用…...
【SkiaSharp绘图14】SKCanvas方法详解(三)URL注释、按顶点绘制、 是否裁切区域之外、旋转、缩放、倾斜、平移、保存/恢复画布
文章目录 SKCanvas方法DrawUrlAnnotation 绘制URL注释DrawVertices 按顶点绘制Flush 立即绘制QuickReject 判断区域是否在裁切区域之外ResetMatrix重置矩阵Restore、RestoreToCountRotateDegrees按角度旋转画布RotateRadians按弧度旋转画布SaveLayer保存并新建图层Scale 缩放画…...
WebDriver API (2)
本文将继续上文对WebDriver API的功能使用进行介绍。 一、浏览器操作 1. 浏览器前进forward与后退back 浏览器前进操作是指导航到前一个页面,在浏览器的历史记录中向前移动一页。 浏览器后退操作是指导航到前一个页面,在浏览器的历史记录中向后移动一…...
GCP FrontendConfig 详解:优化您的云负载均衡
目录 1. 什么是GCP FrontendConfig? 2. FrontendConfig的主要功能 2.1 协议选择 2.2 SSL/TLS配置 2.3 重定向配置 2.4 自定义响应头 3. 配置FrontendConfig 4. FrontendConfig的高级特性 4.1 智能路由 4.2 流量控制 4.3 日志和监控 5. FrontendConfig最佳实践 5.…...
TensorFlow代码逻辑 vs PyTorch代码逻辑
文章目录 一、TensorFlow(一)导入必要的库(二)加载MNIST数据集(三)数据预处理(四)构建神经网络模型(五)编译模型(六)训练模型…...
boost asio异步服务器(4)处理粘包
粘包的产生 当客户端发送多个数据包给服务器时,服务器底层的tcp接收缓冲区收到的数据为粘连在一起的。这种情况的产生通常是服务器端处理数据的速率不如客户端的发送速率的情况。比如:客户端1s内连续发送了两个hello world!,服务器过了2s才接…...
【QT】常用控件|widget|QPushButton|RadioButton|核心属性
目录 编辑 概念 信号与槽机制 控件的多样性和定制性 核心属性 enabled geometry 编辑 windowTiltle windowIcon toolTip styleSheet PushButton RadioButton 概念 QT 控件是构成图形用户界面(GUI)的基础组件,它们是实现与…...
【C++ Primer Plus学习记录】函数参数和按值传递
函数可以有多个参数。在调用函数时,只需使用都逗号将这些参数分开即可: n_chars(R,25); 上述函数调用将两个参数传递给函数n_chars(),我们将稍后定义该函数。 同样,在定义函数时,也在函数头中使用由逗号分隔的参数声…...
MySQL:设计数据库与操作
设计数据库 1. 数据建模1.1 概念模型1.2 逻辑模型1.3 实体模型主键外键外键约束 2. 标准化2.1 第一范式2.2 链接表2.3 第二范式2.4 第三范式 3. 数据库模型修改3.1 模型的正向工程3.2 同步数据库模型3.3 模型的逆向工程3.4 实际应用建议 4. 数据库实体模型4.1 创建和删除数据库…...
OBS 免费的录屏软件
一、下载 obs 【OBS】OBS Studio 的安装、参数设置和录屏、摄像头使用教程-CSDN博客 二、使用 obs & 输出无黑屏 【OBS任意指定区域录屏的方法-哔哩哔哩】 https://b23.tv/aM0hj8A OBS任意指定区域录屏的方法_哔哩哔哩_bilibili 步骤: 1)获取区域…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
