C++:枚举类的使用案例及场景
一、使用案例
在C++中,枚举类(也称为枚举类型或enum class
)是C++11及以后版本中引入的一种更加强大的枚举类型。与传统的枚举(enum
)相比,枚举类提供了更好的类型安全性和作用域控制。下面是一个使用枚举类的案例,这个案例模拟了一个简单的交通灯系统。
#include <iostream> // 定义一个枚举类来表示交通灯的状态
enum class TrafficLight { RED, // 红灯 YELLOW, // 黄灯 GREEN // 绿灯
}; // 一个函数,用于打印当前交通灯的状态
void printTrafficLight(TrafficLight light) { switch (light) { case TrafficLight::RED: std::cout << "红灯亮,请停车等待" << std::endl; break; case TrafficLight::YELLOW: std::cout << "黄灯亮,请准备停车" << std::endl; break; case TrafficLight::GREEN: std::cout << "绿灯亮,可以通行" << std::endl; break; default: std::cout << "未知状态" << std::endl; }
} int main() { // 使用枚举类 TrafficLight currentLight = TrafficLight::RED; printTrafficLight(currentLight); // 尝试修改交通灯状态 currentLight = TrafficLight::GREEN; printTrafficLight(currentLight); // 尝试隐式转换(这是不允许的,因为使用了enum class) // 下面的代码会编译失败 // printTrafficLight(2); // 错误:无法从'int'转换为'TrafficLight' return 0;
}
在这个例子中,TrafficLight
是一个枚举类,它有三个成员:RED
、YELLOW
和GREEN
,分别代表交通灯的不同状态。printTrafficLight
函数接受一个TrafficLight
类型的参数,并根据参数的值打印出相应的状态信息。
与普通的枚举(enum
)相比,enum class
提供了更强的类型检查。在上面的代码中,如果你尝试将整数直接传递给printTrafficLight
函数(如printTrafficLight(2);
),编译器会报错,因为enum class
类型的值不能直接由整数隐式转换而来,这有助于减少因类型不匹配而导致的错误。
此外,由于enum class
的成员默认是private
的,它们的作用域被限制在枚举类内部,这有助于避免命名冲突,并提高了代码的可读性和可维护性。在需要时,可以通过::
操作符来访问枚举类的成员,如TrafficLight::RED
。
二、使用场景
枚举类(enum class
)的主要目的和优点包括:
-
类型安全:与传统的枚举(
enum
)相比,枚举类提供了更强的类型安全性。枚举类的成员不会隐式地转换为整数或与其他枚举类型的成员进行比较,这有助于减少因类型不匹配而导致的错误。 -
作用域控制:枚举类的成员默认具有枚举类的作用域,这有助于避免命名冲突。要使用枚举类的成员,通常需要使用枚举类名和
::
操作符(例如TrafficLight::RED
)。 -
可定义性和可扩展性:枚举类可以像其他类一样,拥有成员函数(包括构造函数、析构函数和操作符重载等)。这提供了更多的灵活性和可扩展性。
-
清晰的语义:枚举类提供了一种将一组命名的整数常量组织在一起的方式,使得代码更加清晰易懂。枚举类的成员名通常能够清晰地表达其代表的语义。
然而,枚举类声明的对象并不仅限于与枚举类内部定义的数据进行对比。它们还可以用于各种需要这些枚举值的场景,比如:
- 作为函数的参数或返回值,以指示函数的状态或执行的结果。
- 作为类的成员变量,以表示对象的状态或属性。
- 在条件语句(如
if
、switch
)中作为条件表达式,以根据枚举值执行不同的代码路径。 - 在循环中作为迭代器的值,尽管这种情况较少见,但在某些特定场景下可能会用到。
因此,虽然将枚举类声明的对象与枚举类内部定义的数据进行对比是枚举类的一种常见用法,但枚举类的用途远不止于此。
相关文章:
C++:枚举类的使用案例及场景
一、使用案例 在C中,枚举类(也称为枚举类型或enum class)是C11及以后版本中引入的一种更加强大的枚举类型。与传统的枚举(enum)相比,枚举类提供了更好的类型安全性和作用域控制。下面是一个使用枚举类的案…...
中英双语介绍美国的州:明尼苏达州(Minnesota)
中文版 明尼苏达州简介 明尼苏达州位于美国中北部,以其万湖之州的美誉、丰富的自然资源和多样化的经济结构而著称。以下是对明尼苏达州的详细介绍,包括其地理位置、人口、经济、教育、文化和主要城市。 地理位置 明尼苏达州东接威斯康星州࿰…...

Python实现万花筒效果:创造炫目的动态图案
文章目录 引言准备工作前置条件 代码实现与解析导入必要的库初始化Pygame定义绘制万花筒图案的函数主循环 完整代码 引言 万花筒效果通过反射和旋转图案创造出美丽的对称图案。在这篇博客中,我们将使用Python来实现一个动态的万花筒效果。通过利用Pygame库…...

JavaScript之深入对象,详细讲讲构造函数与常见内置构造函数
前言:哈喽,大家好,我是前端菜鸟的自我修养!今天给大家详细讲讲构造函数与常见内置构造函数,并提供具体代码帮助大家深入理解,彻底掌握!原创不易,如果能帮助到带大家,欢迎…...

PyQt5水平布局--只需5分钟带你搞懂
PyQt5水平布局(QHBoxLayout)是一种在GUI应用程序中用于组织和排列控件的布局方式。它允许开发者将控件在水平方向上从左到右依次排列,非常适合于需要并排显示控件的场景,如工具栏、水平菜单等。 import sys from PyQt5.QtWidgets…...
telegram mini app和game实现登录功能
接上一篇文章,我们在创建好telegram机器人后,开始开发小游戏或者mini App,那就避免不了登录功能。 公开链接 bot设置教程:https://lengmo714.top/6e79860b.html 参考教程参考教程,telegram已经给我们提供非常多的api,我们在获取用…...

【Python】字典练习
python期考练习 目录 1. 首都名编辑 2. 摩斯电码 3. 登录 4. 学生的姓名和年龄编辑 5. 电商 6. 学生基本信息 7. 字母数 1. 首都名 初始字典 (可复制) : d{"China":"Beijing","America":"Washington","Norway":…...

Apache POI、EasyPoi、EasyExcel
目录 编辑 (一)Apache PoI 使用 (二)EasyPoi使用 (三)EasyExcel使用 写 读 最简单的读 最简单的读的excel示例 最简单的读的对象 (一)Apache PoI 使用 (二&…...
gcop:简化 Git 提交流程的高效助手 | 一键生成 commit message
💖 大家好,我是Zeeland。Tags: 大模型创业、LangChain Top Contributor、算法工程师、Promptulate founder、Python开发者。📣 个人说明书:Zeeland📣 个人网站:https://me.zeeland.cn/📚 Github…...

TS_类型
目录 1.类型注解 2.类型检查 3.类型推断 4.类型断言 ①尖括号(<>)语法 ②as语法 5.数据类型 ①boolean ②number ③string ④undefined 和 null ⑤数组和元组 ⑥枚举 ⑦any 和void ⑧symbol ⑨Function ⑩Object 和 object 6.高…...

Linux源码阅读笔记10-进程NICE案例分析2
set_user_nice set_user_nice函数功能:设置某一进程的NICE值,其NICE值的计算是根据进程的静态优先级(task_struct->static_prio),直接通过set_user_nice函数更改进程的静态优先级。 内核源码 void set_user_nice…...

Elasticsearch实战教程: 如何在海量级数据中进行快速搜索
🎬 鸽芷咕:个人主页 🔥 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 引入 Elasticsearch(简称ES)是一个基于Apache Lucene™的开源搜索引擎,无论在开源还是专有领…...

Python学习笔记24:进阶篇(十三)常见标准库使用之数据压缩功能模块zlib,gzip,bz2,lzma的学习使用
前言 本文是根据python官方教程中标准库模块的介绍,自己查询资料并整理,编写代码示例做出的学习笔记。 根据模块知识,一次讲解单个或者多个模块的内容。 教程链接:https://docs.python.org/zh-cn/3/tutorial/index.html 数据压缩…...
【笔记】Android Settings 应用设置菜单的界面代码介绍
简介 Settings应用中,提供多类设置菜单入口,每个菜单内又有各模块功能的实现。 那么各个模块基于Settings 基础的界面Fragment去实现UI,层层按不同业务进行封装继承实现子类: DashboardFragmentSettingsPreferenceFragment 功…...
Symfony配置管理深度解析:构建可维护项目的秘诀
Symfony是一个高度灵活且功能丰富的PHP框架,它提供了一套强大的配置管理系统,使得开发者能够轻松定制和优化应用程序的行为。本文将深入探讨Symfony中的配置管理机制,包括配置的结构、来源、加载过程以及最佳实践。 一、配置管理的重要性 在…...

视频的宣传片二维码怎么做?扫码播放视频的制作教程
现在很多的宣传片会通过扫码的方式来展示,通过将视频生成二维码之后,其他人就可以扫码来查看视频内容,从而简化获取视频的过程,提升视频传播的效率及用户查看视频的便捷性。目前,日常生活和工作中就有视频二维码的应用…...
实用的网站
前端 精简CSS格式 Font Awesome 图标库 BootCDN 加速服务 LOGO U钙网 AI AI工具集 视频下载 B站视频解析下载...

Monorepo(单体仓库)与 MultiRepo(多仓库): Monorepo 单体仓库开发策略与实践指南
🔥 个人主页:空白诗 文章目录 一、引言1. Monorepo 和 MultiRepo 简介2. 为什么选择 Monorepo? 二、Monorepo 和 MultiRepo 的区别1. 定义和概述2. 各自的优点和缺点3. 适用场景 三、Monorepo 的开发策略1. 版本控制2. 依赖管理3. 构建和发布…...

使用 PyTorch 创建的多步时间序列预测的 Encoder-Decoder 模型
Encoder-decoder 模型在序列到序列的自然语言处理任务(如语言翻译等)中提供了最先进的结果。多步时间序列预测也可以被视为一个 seq2seq 任务,可以使用 encoder-decoder 模型来处理。本文提供了一个用于解决 Kaggle 时间序列预测任务的 encod…...
开启IT世界的第一步:高考新生的暑期学习指南
目录 前言 了解IT领域 学习编程语言 实践项目 学习资源 阅读专业书籍 培养良好的学习习惯 结语 最后 - 投票 前言 七月的钟声敲响,各省的高考分数已揭晓,意味着一段紧张而又充满奋斗的旅程画上了句号。然而,高考的结束并不意味…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...

React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化
是不是受够了安装了oracle database之后sqlplus的简陋,无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话,配置.bahs_profile后也能解决上下翻页这些,但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可,…...

【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道
文/法律实务观察组 在债务重组领域,专业机构的核心价值不仅在于减轻债务数字,更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明,合法债务优化需同步实现三重平衡: 法律刚性(债…...