当前位置: 首页 > news >正文

二叉树之遍历

二叉树之遍历

  • 二叉树遍历
    • 遍历分类
      • 前序遍历
        • 流程描述
        • 代码实现
      • 中序遍历
        • 流程描述
        • 代码实现
      • 后序遍历
        • 流程描述
        • 代码实现
      • 层次遍历
        • 流程描述
        • 代码实现
      • 总结

二叉树遍历

遍历分类

遍历二叉树的思路有 4 种,分别是:

  • 前序遍历二叉树,有递归和非递归两种方式;
  • 中序遍历二叉树,有递归和非递归两种方式;
  • 后序遍历二叉树,有递归和非递归两种方式;
  • 层次遍历二叉树

前序遍历

流程描述

所谓前序遍历二叉树,指的是从根结点出发,按照以下步骤访问二叉树的每个结点:

  1. 访问当前结点;
  2. 进入当前结点的左子树,以同样的步骤遍历左子树中的结点;
  3. 遍历完当前结点的左子树后,再进入它的右子树,以同样的步骤遍历右子树中的结点;

举个简单的例子,下图是一棵二叉树:
在这里插入图片描述
前序遍历这棵二叉树的过程是:

访问根节点 1;
进入 1 的左子树,执行同样的步骤:访问结点 2;进入 2 的左子树,执行同样的步骤:访问结点 4;结点 4 没有左子树;结点 4 没有右子树;进入 2 的右子树,执行同样的步骤:访问结点 5;结点 5 没有左子树;结点 5 没有右子树;
进入 1 的右子树,执行同样的步骤:访问结点 3;进入 3 的左子树,执行同样的步骤:访问结点 6;结点 6 没有左子树;结点 6 没有右子树;进入 3 的右子树,执行同样的步骤:访问结点 7;结点 7 没有左子树;结点 7 没有右子树; 

经过以上过程,就访问了二叉树中的各个结点,访问的次序是:

1 2 4 5 3 6 7

代码实现
/*** 前序遍历- 递归实现* 访问当前结点;* 进入当前结点的左子树,以同样的步骤遍历左子树中的结点;* 遍历完当前结点的左子树后,再进入它的右子树,以同样的步骤遍历右子树中的结点;* @param treeNode*/public static void preTraverseForRecursion(TreeNode treeNode){if (treeNode != null){// 访问当前节点printTreeNode(treeNode);// 访问当前节点的左子节点preTraverseForRecursion(treeNode.left);// 访问当前节点的右子节点preTraverseForRecursion(treeNode.right);}}/*** 前序遍历- 非递归实现* 众所周知:递归实现无非是使用了栈结构来实现的,压栈,出栈,所以非是递归实现前序遍历就是自己实现栈* 访问当前结点;* 进入当前结点的左子树,以同样的步骤遍历左子树中的结点;* 遍历完当前结点的左子树后,再进入它的右子树,以同样的步骤遍历右子树中的结点;* @param treeNode*/public static void preTraverseForNoRecursion(TreeNode treeNode){TreeNode curr = treeNode;TreeNodeStack stack = new TreeNodeStack();while (curr != null || !stack.isEmpty()){if (curr != null){// 访问当前节点printTreeNode(curr);stack.push(curr);curr = curr.left;}else {TreeNode pop = stack.pop();curr = pop.right;}}}
/*** 树节点栈*/
@Data
public class TreeNodeStack {private int top = -1;private TreeNode[] stack = new TreeNode[10];public boolean isEmpty(){return top < 0;}/*** 入栈* @param treeNode*/public void push(TreeNode treeNode){top++;stack[top] = treeNode;}/*** 出栈* @return*/public TreeNode pop(){if (top < 0){return null;}TreeNode treeNode = stack[top];top--;return treeNode;}
}

中序遍历

流程描述

二叉树的中序遍历,指的是从根结点出发,按照以下步骤访问二叉树中的每个结点:

  1. 先进入当前结点的左子树,以同样的步骤遍历左子树中的结点;
  2. 访问当前结点;
  3. 最后进入当前结点的右子树,以同样的步骤遍历右子树中的结点。

在这里插入图片描述
中序遍历这棵二叉树的过程是:

进入结点 1 的左子树,访问左子树中的结点;进入结点 2 的左子树,访问左子树中的结点;试图进入结点 4 的左子树,但该结点没有左子树;访问结点 4;试图进入结点 4 的右子树,但该结点没有右子树;访问结点 2;进入结点 2 的右子树,访问右子树中的结点;试图进入结点 5 的左子树,但该结点没有左子树;访问结点 5;试图进入结点 5 的右子树,但该结点没有右子树;
访问结点 1;
进入结点 1 的右子树,访问右子树中的结点;进入结点 3 的左子树,访问左子树中的结点;试图进入结点 6 的左子树,但该结点没有左子树;访问结点 6;试图进入结点 6 的右子树,但该结点没有右子树;访问结点 3;进入结点 3 的右子树,访问右子树中的结点;试图进入结点 7 的左子树,但该结点没有左子树;访问结点 7;试图进入结点 7 的右子树,但该结点没有右子树;

最终,中序遍历图 1 中的二叉树,访问各个结点的顺序是:

4 2 5 1 6 3 7

代码实现
/*** 中序遍历-递归实现* 二叉树的中序遍历,指的是从根结点出发,按照以下步骤访问二叉树中的每个结点:* 1. 先进入当前结点的左子树,以同样的步骤遍历左子树中的结点;* 2. 访问当前结点;* 3. 最后进入当前结点的右子树,以同样的步骤遍历右子树中的结点。* @param treeNode*/public static void inTraverseForRecursion(TreeNode treeNode){if (treeNode != null){// 递归-当问当前节点的左子节点inTraverseForRecursion(treeNode.left);// 访问当前节点printTreeNode(treeNode);// 递归-访问当前节点的右子节点inTraverseForRecursion(treeNode.right);}}/*** 中序遍历-非递归实现* 二叉树的中序遍历,指的是从根结点出发,按照以下步骤访问二叉树中的每个结点:* 1. 先进入当前结点的左子树,以同样的步骤遍历左子树中的结点;* 2. 访问当前结点;* 3. 最后进入当前结点的右子树,以同样的步骤遍历右子树中的结点。* @param treeNode*/public static void inTraverseForNoRecursion(TreeNode treeNode){TreeNode curr = treeNode;TreeNodeStack stack = new TreeNodeStack();while (curr != null || !stack.isEmpty()){if (curr != null){// 入栈顺序:1, 2, 4,stack.push(curr);curr = curr.left;}else {// 出栈顺序:4, 2, 1TreeNode pop = stack.pop();printTreeNode(pop);// 然后访问右节点curr = pop.right;}}}

后序遍历

流程描述

后序遍历二叉树,指的是从根结点出发,按照以下步骤访问树中的每个结点:

  1. 优先进入当前结点的左子树,以同样的步骤遍历左子树中的结点;
  2. 如果当前结点没有左子树,则进入它的右子树,以同样的步骤遍历右子树中的结点;
  3. 直到当前结点的左子树和右子树都遍历完后,才访问该结点。

以下图所示的二叉树为例:
在这里插入图片描述
后序遍历这棵二叉树的过程是:

从根节点 1 出发,进入该结点的左子树;进入结点 2 的左子树,遍历左子树中的结点:进入结点 4 的左子树,但该结点没有左孩子;进入结点 4 的右子树,但该结点没有右子树;访问结点 4;进入结点 2 的右子树,遍历右子树中的结点:进入结点 5 的左子树,但该结点没有左孩子;进入结点 5 的右子树,但该结点没有右孩子;访问结点 5;访问结点 2;
进入结点 1 的右子树,遍历右子树中的结点:进入结点 3 的左子树,遍历左子树中的结点:进入结点 6 的左子树,但该结点没有左孩子;进入结点 6 的右子树,但该结点没有右子树;访问结点 6;进入结点 3 的右子树,遍历右子树中的结点:进入结点 7 的左子树,但该结点没有左孩子;进入结点 7 的右子树,但该结点没有右孩子;访问结点 7;访问结点 3;
访问结点 1

最终,后序遍历图 1 中的二叉树,访问各个结点的顺序是:

4 5 2 6 7 3 1

代码实现
 /*** 后序遍历-递归实现* 后序遍历二叉树,指的是从根结点出发,按照以下步骤访问树中的每个结点:* 1. 优先进入当前结点的左子树,以同样的步骤遍历左子树中的结点;* 2. 如果当前结点没有左子树,则进入它的右子树,以同样的步骤遍历右子树中的结点;* 3. 直到当前结点的左子树和右子树都遍历完后,才访问该结点。* @param treeNode*/public static void postTraverseForRecursion(TreeNode treeNode){if (treeNode != null){// 递归-当问当前节点的左子节点postTraverseForRecursion(treeNode.left);// 递归-访问当前节点的右子节点postTraverseForRecursion(treeNode.right);// 访问当前节点printTreeNode(treeNode);}}/*** 后序遍历-非递归实现* 后序遍历二叉树,指的是从根结点出发,按照以下步骤访问树中的每个结点:* 1. 优先进入当前结点的左子树,以同样的步骤遍历左子树中的结点;* 2. 如果当前结点没有左子树,则进入它的右子树,以同样的步骤遍历右子树中的结点;* 3. 直到当前结点的左子树和右子树都遍历完后,才访问该结点。** 4, 5, 2, 6, 7, 3, 1* @param treeNode*/public static void postTraverseForNoRecursion(TreeNode treeNode){TreeNode curr = treeNode;LinkedList<TreeNode> stack = new LinkedList<>();// 定义最后一次出栈节点,防止陷入重复执行TreeNode pop = null;while (curr != null || !stack.isEmpty()){if (curr != null){stack.push(curr);curr = curr.left;}else {// peek方法是查询栈顶数据,但是不弹出TreeNode last = stack.peek();// last.right == pop 如果相等,那就说明已经执行过该右子节点了,这个条件是防止有右子节点的数据陷入死循环中if (last.right == null || last.right == pop){pop = stack.pop();printTreeNode(pop);}else {curr = last.right;}}}}

层次遍历

流程描述

在这里插入图片描述
上面这棵树一共有 3 层,根结点位于第一层,以此类推。

所谓层次遍历二叉树,就是从树的根结点开始,一层一层按照从左往右的次序依次访问树中的结点。

层次遍历用阻塞队列存储的二叉树,可以借助队列存储结构实现,具体方案是:

  1. 将根结点入队;
  2. 从队列的头部提取一个结点并访问它,将该结点的左孩子和右孩子依次入队;
  3. 重复执行第 2 步,直至队列为空;

假设将图 1 中的二叉树存储到链表中,那么层次遍历的过程是:

根结点 1 入队(1);
根结点 1 出队并访问它,然后将 1 的左孩子 2 和右孩子 3 依次入队(3, 2);
将结点 2 出队并访问它,然后将 2 的左孩子 4 和右孩子 5 依次入队(5,4,3);
将结点 3 出队并访问它,然后将 3 的左孩子 6 和右孩子 7 依次入队(7,6,5,4);
根结点 4 出队并访问它,然后将 4 的左孩子(无)和右孩子(无)依次入队(7,6,5);
将结点 5 出队并访问它,然后将 5 的左孩子(无)和右孩子(无)依次入队(7,6);
将结点 6 出队并访问它,然后将 6 的左孩子(无)和右孩子(无)依次入队(7);  
将结点 7 出队并访问它,然后将 6 的左孩子(无)和右孩子(无)依次入队();
队列为空,层次遍历结束

最终,后序遍历图 1 中的二叉树,访问各个结点的顺序是:

1 2 3 4 5 6 7

代码实现
 /*** 层次遍历* 所谓层次遍历二叉树,就是从树的根结点开始,一层一层按照从左往右的次序依次访问树中的结点。* 1. 将根结点入队;* 2. 从队列的头部提取一个结点并访问它,将该结点的左孩子和右孩子依次入队;* 3. 重复执行第 2 步,直至队列为空;* @param treeNode*/public static void levelTraverseForRecursion(TreeNode treeNode){if (treeNode != null){LinkedBlockingQueue<TreeNode> queue = new LinkedBlockingQueue<>(10);queue.offer(treeNode);doPushQueue(queue);}}/*** 使用阻塞队列实现二叉树层次遍历* 阻塞队列的特点就是先进先出* @param nowQueue*/private static void doPushQueue(LinkedBlockingQueue<TreeNode> nowQueue){if (nowQueue.isEmpty()){return;}// 从阻塞队列中弹出TreeNode poll = nowQueue.poll();while (poll != null){printTreeNode(poll);// 如果左子节点不为null, 则入队列if (poll.left != null){nowQueue.offer(poll.left);}// 如果右子节点不为null, 则入队列if (poll.right != null){nowQueue.offer(poll.right);}// 从阻塞队列中弹出poll = nowQueue.poll();}}

总结

总结各个遍历类型的流程

前序遍历:根节点 - 左节点 - 右节点
中序遍历:左节点 - 根节点 - 右节点
后序遍历:左节点 - 右节点 - 根节点
层次遍历:从根节点开始一层一层的遍历(左节点-右节点)

相关文章:

二叉树之遍历

二叉树之遍历 二叉树遍历遍历分类前序遍历流程描述代码实现 中序遍历流程描述代码实现 后序遍历流程描述代码实现 层次遍历流程描述代码实现 总结 二叉树遍历 遍历分类 遍历二叉树的思路有 4 种&#xff0c;分别是&#xff1a; 前序遍历二叉树&#xff0c;有递归和非递归两种…...

【经验贴】如何做好自己的职业规划(技术转项目经理)

我有几个问题想问大家 第一&#xff0c;你了解自己吗&#xff1f;你知道自己想要是什么吗&#xff1f;你了解自己的优势劣势吗&#xff1f; 第二&#xff0c;你了解这个行业吗&#xff1f;你知道这个行业是如何发展起来的吗&#xff1f;你了解这个行业的背景吗&#xff1f;你…...

【笔记】字符串相似度代码分享

目录 一、算法介绍1、算法1&#xff09;基于编辑距离2&#xff09;基于标记3&#xff09;基于序列4&#xff09;基于压缩5&#xff09;基于发音6&#xff09;简单算法 2、安装 二、代码demo1、Hamming 距离2、Levenshtein 距离3、Damerau-Levenshtein距离4、Jaro 相似度5、Jaro…...

AI墓地:738个倒闭AI项目的启示

近年来&#xff0c;人工智能技术迅猛发展&#xff0c;然而&#xff0c;不少AI项目却在市场上悄然消失。根据AI工具聚合网站“DANG”的统计&#xff0c;截至2024年6月&#xff0c;共有738个AI项目停运或停止维护。本文将探讨这些AI项目失败的原因&#xff0c;并分析当前AI初创企…...

工程文件参考——CubeMX+LL库+SPI主机 阻塞式通用库

文章目录 前言CubeMX配置SPI驱动实现spi_driver.hspi_driver.c 额外的接口补充 前言 SPI&#xff0c;想了很久没想明白其DMA或者IT比较好用的方法&#xff0c;可能之后也会写一个 我个人使用场景大数据流不多&#xff0c;如果是大批量数据交互自然是DMA更好用&#xff0c;但考…...

LLM - 模型历史

...

Go语言中的时间与日期处理:time包详解

在Go语言中&#xff0c;time包提供了丰富而强大的功能来处理时间和日期&#xff0c;这对于构建精确计时、定时任务、日期格式化等应用场景至关重要。本文将深入浅出地探讨time包的核心概念、常见问题、易错点及其规避策略&#xff0c;并通过实用代码示例加深理解。 一、时间与…...

Java实现单点登录(SSO)详解:从理论到实践

✨✨谢谢大家捧场&#xff0c;祝屏幕前的小伙伴们每天都有好运相伴左右&#xff0c;一定要天天开心哦&#xff01;✨✨ &#x1f388;&#x1f388;作者主页&#xff1a; 喔的嘛呀&#x1f388;&#x1f388; ✨✨ 帅哥美女们&#xff0c;我们共同加油&#xff01;一起进步&am…...

【leetcode82-91动态规划,91-95多维动态规划】

动态规划【82-91】 多维动态规划【91-95】...

Django学习第四天

启动项目命令 python manage.py runserver 分页功能封装到类中去 封装的类的代码 """ 自定义的分页组件,以后如果想要使用这个分页组件&#xff0c;你需要做&#xff1a; def pretty_list(request):# 靓号列表data_dict {}search_data request.GET.get(q, &…...

redis-benchmark 使用

Redis 自带了一个叫 redis-benchmark 的工具来模拟 N 个客户端同时发出 M 个请求。 Usage: redis-benchmark [-h <host>] [-p <port>] [-c <clients>] [-n <requests>] [-k <boolean>]-h <hostname> Server hostname (default 127.0…...

什么是 qobject_cast?

前言 在 C++ 中,类型转换是一项常见的操作,比如将 int 转换为 char 或将 QString 用于 QMessageBox。但是,为什么我们需要将一个类转换为另一个类呢?本文将解释 qobject_cast 是什么,它的作用以及为什么需要类型转换。 dynamic_cast 和 qobject_cast 的概述 什么是 dyn…...

Python酷库之旅-第三方库Pandas(001)

目录 一、Pandas库的由来 1、背景与起源 1-1、开发背景 1-2、起源时间 2、名称由来 3、发展历程 4、功能与特点 4-1、数据结构 4-2、数据处理能力 5、影响与地位 5-1、数据分析“三剑客”之一 5-2、社区支持 二、Pandas库的应用场景 1、数据分析 2、数据清洗 3…...

Firefox 编译指南2024 Windows10篇- 编译Firefox(三)

1.引言 在成功获取了Firefox源码之后&#xff0c;下一步就是将这些源码编译成一个可执行的浏览器。编译是开发流程中的关键环节&#xff0c;通过编译&#xff0c;我们可以将源代码转换为可执行的程序&#xff0c;测试其功能&#xff0c;并进行必要的优化和调试。 对于像Firef…...

CSS弹性布局:打造响应式与灵活的网页设计

一、弹性布局是什么&#xff1f; 弹性布局&#xff08;Flexbox&#xff09;是一种CSS布局模型&#xff0c;它提供了一种更加高效的方式来对容器中的项目进行布局、对齐和分配空间。与传统的布局方式相比&#xff0c;Flexbox旨在提供一个更加灵活的方式来布局复杂的网页结构&am…...

【高阶数据结构】图的应用--最短路径算法

文章目录 一、最短路径二、单源最短路径--Dijkstra算法三、单源最短路径--Bellman-Ford算法四、多源最短路径--Floyd-Warshall算法 一、最短路径 最短路径问题&#xff1a;从在带权有向图G中的某一顶点出发&#xff0c;找出一条通往另一顶点的最短路径&#xff0c;最短也就是沿…...

腾讯云函数node.js返回自动带反斜杠

云函数返回自动带反斜杠 这里建立了如下一个云函数,目的是当APP过来请求的时候响应支持的版本号: use strict; function main_ret(status,code){let ret {status: status,error: code};return JSON.stringify(ret); } exports.main_handler async (event, context) > {/…...

大模型知识学习

大模型训练过程 数据清洗 拟人化描述&#xff1a;知识库整理 预训练 拟人化描述&#xff1a;知识学习可以使用基于BERT预训练模型进行训练 指令微调 拟人化描述&#xff1a;实际工作技能学习实际操作&#xff1a;让大模型模仿具体的输入输出进行拟合&#xff0c;即模仿学…...

JAVA声明数组

一、声明并初始化数组 直接初始化&#xff1a;在声明数组的同时为其分配空间并初始化元素。 int[] numbers {1, 2, 3, 4, 5}; 动态初始化&#xff1a;先声明数组&#xff0c;再为每个元素分配初始值。 double[] decimals;decimals new double[5]; // 分配空间&#xff0c;但…...

VBA通过Range对象实现Excel的数据写入

前言 本节会介绍通过VBA中的Range对象&#xff0c;来实现Excel表格中的单元格写入、区域范围写入&#xff0c;当然也可以写入不同类型的数据&#xff0c;如数值、文本、公式&#xff0c;以及实现公式下拉自动填充的功能。 一、单元格输入数据 1.通过Value方法实现输入不同类型…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

深入理解Optional:处理空指针异常

1. 使用Optional处理可能为空的集合 在Java开发中&#xff0c;集合判空是一个常见但容易出错的场景。传统方式虽然可行&#xff0c;但存在一些潜在问题&#xff1a; // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...

学习一下用鸿蒙​​DevEco Studio HarmonyOS5实现百度地图

在鸿蒙&#xff08;HarmonyOS5&#xff09;中集成百度地图&#xff0c;可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API&#xff0c;可以构建跨设备的定位、导航和地图展示功能。 ​​1. 鸿蒙环境准备​​ ​​开发工具​​&#xff1a;下载安装 ​​De…...