当前位置: 首页 > news >正文

pyecharts可视化案例大全(1~10)

pyecharts可视化案例大全

  • 一、堆叠柱状图
  • 二、关闭坐标轴显示
  • 三、自定义坐标轴标签文本
  • 四、更改坐标轴数据类型
  • 五、双Y轴【直方图&折线图】
  • 六、直方图——双Y轴
  • 七、折线图——双X轴
  • 八、图例选择设置单选
  • 九、缩略轴——inside组件
  • 十、缩略轴——slider组件

一、堆叠柱状图

不同系列的数据使用相同的stack值会堆叠在一起 。

from pyecharts.charts import *
from pyecharts import options as opts
from pyecharts.faker import Fakerdef bar_stack():bar = Bar(init_opts=opts.InitOpts

相关文章:

pyecharts可视化案例大全(1~10)

pyecharts可视化案例大全 一、堆叠柱状图二、关闭坐标轴显示三、自定义坐标轴标签文本四、更改坐标轴数据类型五、双Y轴【直方图&折线图】六、直方图——双Y轴七、折线图——双X轴八、图例选择设置单选九、缩略轴——inside组件十、缩略轴——slider组件一、堆叠柱状图 不…...

SpringBoot 启动流程一

SpringBoot启动流程一 我们首先创建一个新的springboot工程 我们不添加任何依赖 查看一下pom文件 我们创建一个文本文档 记录我们的工作流程 我们需要的是通过打断点实现 我们首先看一下启动响应类 package com.bigdata1421.start_up;import org.springframework.boot.Spr…...

打印机删除副本以后无法安装打印机驱动

根据知乎文章解决打印机驱动副本存在多个,打印机驱动无法删除,或者驱动包无法删除等问题。的方法删除打印机副本以后发现无论如何也装不上驱动了。 要么驱动安装成功,但是设备仍然是指定状态。 后面发现是删错文件夹了,教程里让删…...

Vue3中为Ant Design Vue中Modal.confirm自定义内容

在一次业务开发时代码时,碰到了一种既想要Modal.confirm样式,又想要定制其content内容的情况。 大部分情况下,使用Modal.method()这种方式时,可能content内容固定都是字符串,那如果想要做更高级的交互怎么办&#xff…...

智能猫砂盆到底哪家好用?自费实测聚宠、糯雪、CEWEY真实反馈!

快到夏天了,是不是还有人因为没挑选到喜欢的智能猫砂盆而苦恼着?太便宜怕不好用,太贵怕质量比不上价格。来来去去拖到现在还没决定,我作为养了四年猫的资深铲屎官,今天就来给大家传授经验,关于我是怎么从好…...

初阶数据结构之二叉树

那么本篇文是初阶数据结构这个系列的最后一篇文章,那么闲话少叙,我们直接进入正题 在讲二叉树的一些之前知识点之前,我先给大家送个小礼物哈 手搓二叉树 typedef int BTDataType ; typedef struct BinaryTreeNode { BTDataType _data …...

代码随想三刷动态规划篇8

代码随想三刷动态规划篇8 122. 买卖股票的最佳时机 II题目代码 123. 买卖股票的最佳时机 III题目代码 188. 买卖股票的最佳时机 IV题目代码 309. 买卖股票的最佳时机含冷冻期题目代码 122. 买卖股票的最佳时机 II 题目 链接 代码 class Solution {public int maxProfit(int…...

​​服务拆分的原则

目录 一、单一职责原则 二、服务自治原则 三、单向依赖 一、单一职责原则 单⼀职责原则原本是面向对象设计中的⼀个基本原则, 它指的是⼀个类应该专注于单⼀功能. 不要存在多于⼀个导致类变更的原因 在微服务架构中, ⼀个微服务也应该只负责⼀个功能或业务领域, 每个服务应该…...

离线安装docker社区版

提示:以下所有命令都在Ubuntu-24.04-live-server-amd64系统中运行 文章目录 前言一、离线包制作二、在目标系统上离线安装Docker CE总结 前言 安全原因,内部机器不能联网,要给新机器安装 docker-ce 只能使用离线安装方法。如果使用本文的下载…...

徒手绘制 Android 通用进度条

拖动条&#xff08;FlexSeekBar&#xff09;&#xff0c;在Android的各个地方都非常常用&#xff0c;本文旨在自研一套通用的进度条&#xff0c;非常适合车载App使用 样式如下&#xff1a; 使用示例 <!--默认用法--> <com.max.android.ui.seekbar.FlexSeekBarandroi…...

【TB作品】矩阵键盘电话拨号,ATMEGA16单片机,Proteus仿真 atmega16矩阵键盘电话拨号

atmega16矩阵键盘电话拨号 c代码和仿真图&#xff1a; 使用ATmega16实现矩阵键盘电话拨号功能 项目背景 在电子设计和嵌入式系统开发中&#xff0c;矩阵键盘是常见的人机交互方式。它可以实现较多按键的输入&#xff0c;同时节省单片机的I/O资源。结合LCD显示和蜂鸣器&am…...

JavaScript(6)——数据类型转换

为什么需要类型转换&#xff1f; JavaScript是弱数据类型&#xff1a;JavaScript不知道变量到底属于哪种数据类型&#xff0c;只有赋值了才清除 使用表单&#xff0c;prompt获取的数据默认为字符串类型&#xff0c;此时不能直接进行算数运算 隐式转换 某些运算符被执行时&am…...

概率论与数理统计_下_科学出版社

contents 前言第5章 大数定律与中心极限定理独立同分布中心极限定理 第6章 数理统计的基本概念6.1 总体与样本6.2 经验分布与频率直方图6.3 统计量6.4 正态总体抽样分布定理6.4.1 卡方分布、t 分布、F 分布6.4.2 正态总体抽样分布基本定理 第7章 参数估计7.1 点估计7.1.1 矩估计…...

Android 复习layer-list使用

<shape android:shape"rectangle"> <size android:width"1dp" android:height"100px" /> <solid android:color"#FFFFFF" /> </shape> 通过shape画线段,通过 <item android:gravity"left|top"…...

汉光联创HGLM2200N黑白激光多功能一体机加粉及常见问题处理

基本参数&#xff1a; 机器型号&#xff1a;HGLM2200N 产品名称&#xff1a;A4黑白激光多功能一体机 基础功能&#xff1a;打印、扫描、复印 打印速度&#xff1a;22页/分钟 纸张输入容量&#xff1a;150-249页 单面支持纸张尺寸&#xff1a;A4、A5、A6 产品尺寸&#x…...

引领汽车软件开发走向ASPICE认证之路

亚远景科技与ASPICE认证的关系可以从以下几个方面来阐述&#xff1a; (要明确的是&#xff1a;在ASPICE行业中专业来说&#xff0c;ASPICE项目是没有认证&#xff0c;而只有评估。不过&#xff0c;为了方便沟通&#xff0c;人们常将这一评估过程称为认证。&#xff09; 行业专…...

【C/C++ new/delete和malloc/free的异同及原理】

new/delete和malloc/free都是用于在C&#xff08;以及C语言在malloc/free的情况下&#xff09;中动态申请和释放内存的机制&#xff0c;但它们之间存在一些显著的异同点。以下是对这两组函数/运算符的异同点的详细分析&#xff1a; 相同点 目的相同&#xff1a;两者都用于在堆…...

Maven Archetype 自定义项目模板:高效开发的最佳实践

文章目录 前言一、Maven Archetype二、创建自定义 Maven Archetype三、定制 Archetype 模板四、手动创建 Archetype 模板项目五、FAQ5.1 如何删除自定义的模板5.2 是否可以在模板中使用空文件夹 六、小结推荐阅读 前言 在软件开发中&#xff0c;标准化和快速初始化项目结构能够…...

vue的ESLint 4格缩进 笔记

https://chatgpt.com/share/738c8560-5271-45c4-9de0-511fad862109 一&#xff0c;代码4格缩进设置 .eslintrc.js文件 module.exports { "rules": { "indent": ["error", 4] } }; 自动修复命令 npx eslint --fix "src/**/*.{…...

【前端项目笔记】8 订单管理

订单管理 效果展示&#xff1a; 在开发功能之前先创建分支order cls 清屏 git branch 查看所有分支&#xff08;*代表当前分支&#xff09; git checkout -b order 新建分支order git push -u origin order 将本地的当前分支提交到云端仓库origin中命名为order 通过路由方式…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

基于Java+VUE+MariaDB实现(Web)仿小米商城

仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意&#xff1a;运行前…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官

。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量&#xff1a;setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...

小木的算法日记-多叉树的递归/层序遍历

&#x1f332; 从二叉树到森林&#xff1a;一文彻底搞懂多叉树遍历的艺术 &#x1f680; 引言 你好&#xff0c;未来的算法大神&#xff01; 在数据结构的世界里&#xff0c;“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的&#xff0c;它…...