当前位置: 首页 > news >正文

VMware替换关键技术:核心业务系统中,访存密集型应用的性能优化

越来越多用户采用虚拟化、超融合以及云平台环境来承载其核心业务,核心业务的高并发对性能的要求尤为严格,在VMware替换的热潮下,原VMware用户也更为关注新平台在核心业务上的性能表现是否对标,或实现超越。深信服将通过系列解析,为大家从不同维度分享提升平台性能的关键技术。

在当前用户的核心业务系统中,访存密集型应用越来越多,如金融行业的高频交易系统、风险管理系统;医疗行业的电子健康记录(EHR)系统、物流行业的仓库管理系统等。这些系统对于访存要求的提升,与其后端使用了很多如分布式缓存Redis、大数据处理引擎Spark,分析型数据库HANA、AI引擎/模型等服务组件有很大关系。以Redis为例,其为内存型数据库,内存访问速度会直接影响其性能表现。

NUMA作为当前主流的服务器CPU架构,在NUMA架构下,如何提升访存速度是虚拟化性能优化的重要课题之一。本文将详细解析深信服在NUMA架构优化方面的技术,展示如何通过这些技术提升虚拟化平台的性能,满足用户核心业务高并发运行的要求,以及在VMware替代过程中的性能需求。

NUMA架构背景

在早期的计算机系统中,通常只有一个处理器用于执行所有的计算任务。然而,随着计算机应用的复杂性和需求的增加,单个处理器无法满足高性能计算的要求,计算机系统逐渐向多核架构演进。

传统的多核方案采用的是SMP (Symmetric Multi-Processing) 技术,即对称多处理器结构。在SMP架构下,每个处理器的地位都是平等的,对内存的使用权限也相同。任何一个线程都可以分配到任何一个处理器上运行,在操作系统的支持下,可以达到非常好的负载均衡,让整个系统的性能、吞吐量有较大提升。但是,由于多个核使用相同的总线访问内存,随着核数的增长,总线将成为瓶颈,制约系统的扩展性和性能。

在这里插入图片描述
NUMA架构可以很好地解决SMP架构的内存访问瓶颈问题。在NUMA架构中,系统被划分为多个节点,每个节点包含一个或多个处理器、本地内存和I/O设备。节点之间通过高速互连网络进行通信,如HyperTransport (AMD) 或QuickPath Interconnect (Intel) 等,使处理器优先访问本地内存,降低内存访问延迟,提高了多处理器系统的性能。

在这里插入图片描述
在NUMA中有三种节点类型:

  • 本地节点:对于某个节点中的所有CPU,此节点称为本地节点。
  • 邻居节点:与本地节点相邻的节点称为邻居节点。
  • 远端节点:非本地节点或邻居节点的节点,称为远端节点。

CPU访问不同类型节点内存的速度是不相同的,访问本地节点的速度最快,访问远端节点的速度最慢,即访问速度与节点的距离有关,距离越远访问速度越慢。

Christoph Lameter博士在《NUMA: An Overview》一文中指出:2013年,高端商用服务器有两个NUMA节点,本地节点的随机内存访问时延为100ns左右,远端节点的内存访问时延需要增加50%。

NUMA引入挑战

在linux系统中,线程作为CPU调度的基本单位,对应CPU运行队列上的一个任务。内核会为每个任务选择一个相对空闲的CPU,但CPU的负载是动态的,内核实现了CPU的Load Balance机制,会往相对空闲的CPU上迁移任务。也就是说,默认情况下,任务可能在不同的CPU之间迁移。

在NUMA架构下,任务可能从Node 1上的CPU迁移到Node 2上的CPU,任务访问之前Node1上的内存数据,会造成跨节点CPU访问。虽然linux内核提供了NUMA Balance机制,周期性的迁移任务或者内存数据到本地节点,尽可能地让任务访问本地节点的内存,但无法100%避免远端内存的访问。

在虚拟化场景下,一个虚拟机的vCPU对应操作系统上一个线程(如下图),多个vCPU线程运行在不同NUMA节点上共享内存,或者vCPU线程在不同NUMA节点之间迁移,都会导致虚拟机跨NUMA节点访问,内存访问延迟增加。

在这里插入图片描述

业界NUMA调度技术机制

针对NUMA特性,业界主要有以下几种常见方案:

方案1:vCPU绑定物理核
需要手动设置vCPU绑定,vm资源优先绑定在物理机的同一个NUMA Node上。

方案2:指定虚拟机绑定的NUMA节点数量
手动配置绑定的NUMA节点数,会将vCPU和内存平均分配到相应数量的NUMA节点上。

方案3:自适应分配NUMA节点
调度程序会为虚拟机自动分配NUMA节点,虚拟机的CPU会被限制在NUMA节点上运行,优先使用本地内存,提高内存局部性。虚拟机的vCPU个数可能超过NUMA节点核的数量,单个NUMA节点无法容纳,会被分配到多个NUMA节点。为了提高内存局部性,支持将NUMA拓扑暴露给虚拟机,由虚拟机做最佳决策。同时在NUMA节点间迁移云主机,保证节点间的Load Balance。

从使用上看,方案1、2限制较多,使用上不是很方便,对VM的CPU数量有要求,并且静态绑定可能导致NUMA节点间负载不均衡。因此,方案3比较常见。

深信服NUMA调度技术详解

深信服超融合主要采用自适应的NUMA调度,自适应NUMA调度能够做到NUMA之间的负载均衡,同时减少vCPU远程内存访问,提升整体的性能。

自适应的NUMA调度在不同类型应用中优化效果明显,特别对于一些内存操作的中间件。我们在虚拟机中分别部署DM8(达梦数据库)、Redis和memcache,分别在开启和关闭NUMA调度的场景下执行基准测试。从测试数据看,开启NUMA调度后,中间件性能明显提升。

在这里插入图片描述
BenchmarkSQL是一个关系型数据库的基准测试工具,通过对数据库进行 TPC-C 标准测试,即模拟多种事务处理:新订单、支付操作、订单状态查询、发货、库存状态查询等,从而获得最终的tpmC值。tmpC表示每分钟可以处理多少个新订单,值越大代表性能越好。通过BechmarkSQL V5.0来对达梦数据库dm8运行基准测试。

下图表示启用NUMA调度对应用的相对性能改进,Y轴的100%表示关闭NUMA调度测出来的tmpC指标权重。

在这里插入图片描述
redis-benchmark是Redis官方提供的性能测试工具,我们通过redis-benchmark 对Redis V7.2.5进行压测,在关闭/开启NUMA调度场景下,分别测试SET/GET长度为1KB的value的QPS指标。QPS表示每秒的读写操作数。

测试命令及参数:
redis-benchmark -t get -d 16 -c 100 -n 6000000 -r 60000000
redis-benchmark -t set -d 16 -c 100 -n 6000000 -r 60000000

下图表示启用NUMA调度对应用的相对性能改进,Y轴的100%表示关闭NUMA调度测出来的QPS指标权重。

在这里插入图片描述
memaslap是Memcache自带的性能测试工具,我们通过memaslap对Memcache V6.27压测,在关闭/开启NUMA调度场景下,分别测试value长度为1kb的TPS值。TPS表示每秒事务数。

测试命令及参数:
memaslap -s 127.0.0.1:11211 -t 300s -T 8

下图表示启用NUMA调度对应用的相对性能改进,Y轴的100%表示关闭NUMA调度测出来的TPS指标权重。
在这里插入图片描述
从上面的测试数据看,对于访存密集型应用优化效果比较明显。以下为具体实现原理。

自适应分配NUMA节点

自适应地将虚拟机的vCPU进行划分后调度到NUMA节点,减少虚拟机vCPU远程内存访问。如图,自动为虚拟机选择合适的NUMA节点,当虚拟机vCPU数量小于NUMA Node的核数时,则将调度到一个NUMA节点上。当虚拟机vCPU数量大于NUMA 节点的核数时,则将调度到多个NUMA Node上,同时会将vNUMA拓扑暴露给虚拟机,由虚拟机做出最佳决策。

在这里插入图片描述
为了保证NUMA节点的负载均衡,在放置虚拟机时,会考虑NUMA节点间的负载情况,选择一个负载较低的节点。同时,在虚拟机运行过程中,结合NUMA节点负载,会对虚拟机在NUMA节点之间进行迁移。优先保障重要虚拟机所在NUMA节点负载更低,能够避免CPU、内存带宽以及Cache资源的相互抢占。

信创场景优化

信创服务器NUMA节点多,NUMA间的距离也不一致,NUMA节点的核数也相对较少。
在这里插入图片描述
针对信创服务器的NUMA特点,我们会识别NUMA节点之间的距离,优先将同一个虚拟机多个vNUMA放置到相近的pNUMA上。

为了进一步在信创场景下提高数据转发性能,深信服为底层虚拟化设计开发NUMA亲和性功能,即对虚拟机和数据转发进程进行强关联,调度到同一个NUMA节点上,使用本地内存访问,提高数据转发的性能。如图,DP为数据转发进程。

在这里插入图片描述
为了最大程度发挥NUMA的优势,在存储层面将一条完整IO上的vCPU、qemu、libnfs、aSAN等进程调度到同一个NUMA Node(如下图),避免内存远端数据访问,并使用大页内存机制提高访存性能,降低数据处理过程中的开销,提升IO流处理效率。

在这里插入图片描述
数据在从网卡缓存区传输到虚拟存储的过程中,需要经过各自的CPU线程进行处理。而随着网卡性能提升,单核CPU缓存转存的效率成为瓶颈,且跨NUMA的远端访问也会降低效率。让网卡可以被多个CPU进行处理,同时对其进行NUMA亲和,既打破了缓存转存的瓶颈,也可以降低传输延迟,更大程度地提升并发性能,提升虚拟机高深度大块写性能20%以上。

在这里插入图片描述

与业界方案的对比分析

行业支持情况:
H厂商支持在页面上配置虚拟机每个vCPU运行到哪个NUMA节点;S厂商不支持;VMware支持自适应NUMA调度。

深信服平台自适应将虚拟机的vCPU进行划分后放置到NUMA节点,减少虚拟机vCPU远程内存访问。相比页面配置每个vCPU运行位置,深信服自适应NUMA调度能够自动进行虚拟机vCPU的划分和放置,并且在NUMA之间进行均衡,减少vCPU远程内存访问,提升整体的性能。

相比VMware,深信服通过创新研究院和云产品线的合作研究,深度结合我们自己的业务场景以及平台服务情况,增加了存储服务的NUMA调度、重要虚拟机识别、信创场景适配、虚拟机网络亲和等,提升调度效果。

总结

深信服的NUMA自适应调度基于各场景做了深度适配优化,进一步提升应用的内存访问速度:

  • 自适应将虚拟机的vCPU进行划分后放置到NUMA节点,减少虚拟机vCPU远程内存访问。
  • 在不同的NUMA节点之间进行迁移,保障NUMA节点之间负载均衡。
  • 识别重要虚拟机,保障重要虚拟机所在NUMA节点负载更低,能够避免CPU、内存带宽以及Cache资源的相互抢占。
  • 针对信创服务器多NUMA且NUMA间距离不一样的场景,增加了识别NUMA节点之间的距离,优先将同一个虚拟机多个vNUMA放置到相近的pNUMA上。
  • 支持虚拟机网络亲和选项,勾选后将虚拟机调度到和网络数据面相同的NUMA节点,提高数据转发的性能。
  • 不仅对虚拟机进行NUMA调度,对存储服务也会进行相应的NUMA调度。

UnixBench测试实例

UnixBench是一个广泛使用的基准测试工具,用于评估类Unix系统(包括UNIX、BSD和Linux)的性能。它通过一系列测试来衡量系统的各种性能指标,如CPU、文件系统、内存和进程等。

测试环境说明:
在这里插入图片描述

在这里插入图片描述
测试结果:

在落地版本HCI 6.9.0中,我们能达到如下效果。在后续版本的优化中,我们仍持续保持该项技术效果的领先。

超融合启用NUMA时,UnixBench测试结果如下:
同主机六台虚拟机结果相较于S厂商高出20.2%,同主机八台虚拟机得分相较于S厂商高出34.17%。

在这里插入图片描述

相关文章:

VMware替换关键技术:核心业务系统中,访存密集型应用的性能优化

越来越多用户采用虚拟化、超融合以及云平台环境来承载其核心业务,核心业务的高并发对性能的要求尤为严格,在VMware替换的热潮下,原VMware用户也更为关注新平台在核心业务上的性能表现是否对标,或实现超越。深信服将通过系列解析&a…...

[单master节点k8s部署]20.监控系统构建(五)Alertmanager

prometheus将监控到的异常事件发送给Alertmanager,然后Alertmanager将报警信息发送到邮箱等设备。可以从下图看出,push alerts是由Prometheus发起的。 安装Alertmanager config文件 [rootmaster prometheus]# cat alertmanager-cm.yaml kind: ConfigMa…...

用MySQL+node+vue做一个学生信息管理系统(四):制作增加、删除、修改的组件和对应的路由

1.下载依赖: npm install vue-router 在src目录下新建一个文件夹router,在router文件夹下新建一个文件router.js文件,在component目录下新建增加删除和修改的组件,引入router.js当中 此时的init组件为主页面((二、三&…...

磁盘就是一个超大的Byte数组,操作系统是如何管理的?

磁盘在操作系统的维度看,就是一个“超大的Byte数组”。 那么操作系统是如何对这块“超大的Byte数组”做管理的呢? 我们知道在逻辑上,上帝说是用“文件”的概念来进行管理的。于是,便有了“文件系统”。那么,文件系统…...

14-28 剑和诗人2 - 高性能编程Bend和Mojo

介绍: 在不断发展的计算世界中,软件和硬件之间的界限变得越来越模糊。随着我们不断突破技术可能性的界限,对能够利用现代硬件功能的高效、可扩展的编程语言的需求从未如此迫切。 Bend和 Mojo是编程语言领域的两种新秀,它们有望弥…...

Stable Diffusion:最全详细图解

Stable Diffusion,作为一种革命性的图像生成模型,自发布以来便因其卓越的生成质量和高效的计算性能而受到广泛关注。不同于以往的生成模型,Stable Diffusion在生成图像的过程中,采用了独特的扩散过程,结合深度学习技术…...

Apache Seata分布式事务之Seata-Client原理及流程详解

本文来自 Apache Seata官方文档,欢迎访问官网,查看更多深度文章。 本文来自 Apache Seata官方文档,欢迎访问官网,查看更多深度文章。 前言 在分布式系统中,分布式事务是一个必须要解决的问题,目前使用较多…...

Linux wget报未找到命令

wget报未找到命令需要安装wget 1、下载wget安装文件,本次于华为云资源镜像下载 地址:https://mirrors.huaweicloud.com/centos-vault/7.8.2003/os/x86_64/Packages/ 2、下载后上传到安装服务器/install_package,执行命令安装 rpm -ivh /i…...

38条Web测试经验分享

1. 页面链接检查 每一个链接是否都有对应的页面,并且页面之间切换正确。可以使用一些工具,如LinkBotPro、File-AIDCS、HTML Link Validater、Xenu等工具。 LinkBotPro不支持中文,中文字符显示为乱码;HTML Link Validater只能测…...

TCP报文校验和(checksum)计算

一. 原理 将TCP相关内容&#xff08;TCP伪头部TCP头部TCP内容&#xff09;转换成16比特的字符&#xff0c;然后进行累加&#xff0c;最后结果进行取反。TCP伪头部是固定的&#xff0c;下文有相关代码展示。 二. 源码 源码 #include <stdio.h> #include <stdlib.h&…...

【ue5】虚幻5同时开多个项目

正常开ue5项目我是直接在桌面点击快捷方式进入 只会打开一个项目 如果再想打开一个项目需要进入epic 再点击启动就可以再开一个项目了...

【Python实战因果推断】23_倾向分3

目录 Propensity Score Matching Inverse Propensity Weighting Propensity Score Matching 另一种控制倾向得分的常用方法是匹配估计法。这种方法搜索具有相似可观测特征的单位对&#xff0c;并比较接受干预与未接受干预的单位的结果。如果您有数据科学背景&#xff0c;您可…...

Qt源码解析之QObject

省去大部分virtual和public方法后&#xff0c;Qobject主要剩下以下成员&#xff1a; //qobject.h class Q_CORE_EXPORT Qobject{Q_OBJECTQ_PROPERTY(QString objectName READ objectName WRITE setObjectName NOTIFY objectNameChanged)Q_DECLARE_PRIVATE(QObject) public:Q_I…...

【算法专题】模拟算法题

模拟算法题往往不涉及复杂的数据结构或算法&#xff0c;而是侧重于对特定情景的代码实现&#xff0c;关键在于理解题目所描述的情境&#xff0c;并能够将其转化为代码逻辑。所以我们在处理这种类型的题目时&#xff0c;最好要现在演草纸上把情况理清楚&#xff0c;再动手编写代…...

分库分表真的适合你的系统吗?

曾几何时&#xff0c;“并发高就分库&#xff0c;数据大就分表”已经成了处理 MySQL 数据增长问题的圣经。 面试官喜欢问&#xff0c;博主喜欢写&#xff0c;候选人也喜欢背&#xff0c;似乎已经形成了一个闭环。 但你有没有思考过&#xff0c;分库分表真的适合你的系统吗&am…...

9 redis,memcached,nginx网络组件

课程目标: 1.网络模块要处理哪些事情 2.reactor是怎么处理这些事情的 3.reactor怎么封装 4.网络模块与业务逻辑的关系 5.怎么优化reactor? io函数 函数调用 都有两个作用:io检测 是否就绪 io操作 1. int clientfd = accept(listenfd, &addr, &len); 检测 全连接队列…...

【MySQL】事务四大特性以及实现原理

事务四大特性 原子性&#xff08;Atomicity&#xff09; 事务中的所有操作要么全部完成&#xff0c;要么全部不执行。如果事务中的任何一步失败&#xff0c;整个事务都会被回滚&#xff0c;以保持数据的完整性。 一致性&#xff08;Consistency&#xff09; 事务应确保数据库…...

【控制Android.bp的编译】

1.首先Android.bp的语法是不支持if 条件语句的 2.查到可以用enabled来控制Android.bp中的模块是否参与编译&#xff0c;但是并不能实现动态的控制&#xff0c;比如你需要根据获取到的安卓版本来控制一个Android.bp是否编译&#xff0c;是无法做到的。enabled只能是固定的true或…...

【车载开发系列】J-Link/JFlash 简介与驱动安装方法

【车载开发系列】J-Link/JFlash 简介与驱动安装方法 【车载开发系列】J-Link/JFlash 简介与驱动安装方法 【车载开发系列】J-Link/JFlash 简介与驱动安装方法一. 软件介绍二. 下载安装包二. 开始安装三. 确认安装四. J-Flash的使用 一. 软件介绍 J-Link是SEGGER公司为支持仿真…...

207 课程表

题目 你这个学期必须选修 numCourses 门课程&#xff0c;记为 0 到 numCourses - 1 。 在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出&#xff0c;其中 prerequisites[i] [ai, bi] &#xff0c;表示如果要学习课程 ai 则 必须 先学习课程 bi 。 …...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

IP如何挑?2025年海外专线IP如何购买?

你花了时间和预算买了IP&#xff0c;结果IP质量不佳&#xff0c;项目效率低下不说&#xff0c;还可能带来莫名的网络问题&#xff0c;是不是太闹心了&#xff1f;尤其是在面对海外专线IP时&#xff0c;到底怎么才能买到适合自己的呢&#xff1f;所以&#xff0c;挑IP绝对是个技…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...