当前位置: 首页 > news >正文

JVM原理(二十):JVM虚拟机内存的三特性详解

1. 原子性、可进行、有序性

1.1. 原子性

Java内存模型围绕着在并发过程中如何处理原子性、可见性和有序性这三个特征来建立的。

Java内存模型来直接保证的原子性变量操作包括read、load、assign、use、store和write这六个。我们大致可以认为,基本数据类型的访问、读写都是具备原子性的。

1.2. 可见性

可见性就是指当前一个线程修改了共享变量的值时,其他线程能够立即得知这个修改。

实现:Java内存模型是通过在变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值这种依赖主内存作为传递媒介的方式来实现可见性。

区别:普通变量与volatile(哇了特)变量的区别是:volatile的特殊规则保证了新值能立即同步到主内存,以及每次使用前立即从主内存刷新。因此我们可以说volatile保证了多线程操作时变量的可见性,而普通变量则不能保证这一点。

除了volatile之外,Java还有两个关键字能实现可见性,它们是synchronized和final同步块的可见性:是由“对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store、write操作)”这条规则获得的。而final关键字的可见性是指:被final修饰的字段在构造器中---旦被初始化完成,并且构造器没有把“this"的引用传递出去(this引用逃逸是一件很危险的事情,其他线程有可能通过这个引用访问到“初始化了一半”的对象),那么在其他线程中就能看见final字段的值。

1.3. 有序性

如果在本线程内观察,所有的操作都是有序的;如果在一个线程中观察另一个线程,所有的操作都是无序的。

所有的操作都是无序的。前半句是指“线程内似表现为串行的语义”(Within-Thread As-If-Serial Semantics),后半句是指“指令重排序”现象和“工作内存与主内存同步延迟”现象。

Java语言提供了volatile和synchronized两个关键字保证线程之间操作的有序性。

volatile关键字本身就包含了禁止指令重排序的语义。

synchronized则是由“一个变量在同一时刻只允许一条线程对其进行lock操作”这条规则获得的,这个规则决定了持有同一个锁的两个同步块只能串行地进入。

2. 先行发生原则

概念:先行发生是Java内存模型中定义的两项操作之间的偏序关系,比如说操作A先行发生于操作B,其实就是说在发生操作B之前,操作A产生的影响能被操作B观察到,“影响”包括修改了内存中共享变量的值、发送了消息、调用了方法等。

作用:它是判断数据是否存在竞争,线程是否安全地非常有用地手段

如果两个操作之间的关系不在此列,并且无法从下列规则推导出来,则它们就没有顺序性保障,虚拟机可以对它们随意地进行重排序。

  • 程序次序规则( Program Order Rule) :在一个线程内,按照控制流顺序,书写在前面的操作先行发生于书写在后面的操作。注意,这里说的是控制流顺序而不是程序代码顺序,因为要考虑分支、循环等结构。

  • 管程锁定规则(Monitor Lock Rule) :一个unlock操作先行发生于后面对同一个锁的lock操作。这里必须强调的是“同一个锁”,而“后面”是指时间上的先后。

  • volatile变量规则( Volatile Variable Rule) :对一个volatile变量的写操作先行发生于后面对这个变量的读操作,这里的“后面”同样是指时间上的先后。

  • 线程启动规则(Thread Start Rule):Thread对象的start()方法先行发生于此线程的每一个动作。

  • 线程终止规则(Thread Termination Rule) :线程中的所有操作都先行发生于对此线程的终止检测,我们可以通过Thread:join()方法是否结束、Thread:isAlive()的返 回值等手段检测线程是否已经终止执行。

  • 线程中断规则(Thread Interruption Rule) :对线程interrupt(方法的调用先行发生于被中断线程的代码检测到中断事件的发生,可以通过Threa:interrupted0方法检测到是否有中断发生。

  • 对象终结规则(Finalizer Rule) : 一个对象的初始化完成(构造函数执行结束)先行发生于它的finalize(方法的开始。

  • 传递性 (Transitivity) :如果操作A先行发生于操作B,操作B先行发生于操作C,那就可以得出操作A先行发生于操作C的结论。

相关文章:

JVM原理(二十):JVM虚拟机内存的三特性详解

1. 原子性、可进行、有序性 1.1. 原子性 Java内存模型围绕着在并发过程中如何处理原子性、可见性和有序性这三个特征来建立的。 Java内存模型来直接保证的原子性变量操作包括read、load、assign、use、store和write这六个。我们大致可以认为,基本数据类型的访问、…...

Flink 窗口触发器(Trigger)(二)

Flink 窗口触发器(Trigger)(一) Flink 窗口触发器(Trigger)(二) Apache Flink 是一个开源流处理框架,用于处理无界和有界数据流。在 Flink 的时间窗口操作中,触发器(Trigger)是一个非常重要的概念,它决定了窗口何时应…...

CH12_函数和事件

第12章:Javascript的函数和事件 本章目标 函数的概念掌握常用的系统函数掌握类型转换掌握Javascript的常用事件 课程回顾 Javascript中的循环有那些?Javascript中的各个循环特点是什么?Javascript中的各个循环语法分别是什么?…...

Android- Framework 非Root权限实现修改hosts

一、背景 修改system/etc/hosts,需要具备root权限,而且remount后,才能修改,本文介绍非root状态下修改system/etc/hosts方案。 环境:高通 Android 13 二、方案 非root,system/etc/hosts只有只读权限&…...

mac安装达梦数据库

参考:mac安装达梦数据库​​​​​​ 实践如下: 1、下载达梦Docker镜像文件 同参考链接 2、导入镜像 镜像可以随便放在某个目录,相当于安装包,导入后就没有作用了。 查找达梦镜像名称:dm8_20240613_rev229704_x86…...

14-41 剑和诗人15 - RLAIF 大模型语言强化培训

​​​​​​ 介绍 大型语言模型 (LLM) 在自然语言理解和生成方面表现出了巨大的能力。然而,这些模型仍然存在严重的缺陷,例如输出不可靠、推理能力有限以及缺乏一致的个性或价值观一致性。 为了解决这些限制,研究人员采用了一种名为“人工…...

每日一题~oj(贪心)

对于位置 i来说,如果 不选她,那她的贡献是 vali-1 *2,如果选他 ,那么她的贡献是 ai. 每一个数的贡献 是基于前一个数的贡献 来计算的。只要保证这个数的前一个数的贡献是最优的,那么以此类推下去,整体的val…...

成人高考报名条件及收费标准详解

成人高考报名条件及收费标准详解 您想通过成人高考改变自己的命运,但不知道报名条件和收费标准?本文将为您详细介绍成人高考报名条件和收费标准,并为您提供专业的成人教育服务。 深圳成人高考www.shenzhixun.com 成人高考报名条件 成人高考…...

openmetadata1.3.1 自定义连接器 开发教程

openmetadata自定义连接器开发教程 一、开发通用自定义连接器教程 官网教程链接: 1.https://docs.open-metadata.org/v1.3.x/connectors/custom-connectors 2.https://github.com/open-metadata/openmetadata-demo/tree/main/custom-connector (一&…...

PostgreSQL 如何优化存储过程的执行效率?

文章目录 一、查询优化1. 正确使用索引2. 避免不必要的全表扫描3. 使用合适的连接方式4. 优化子查询 二、参数传递1. 避免传递大对象2. 参数类型匹配 三、减少数据量处理1. 限制返回结果集2. 提前筛选数据 四、优化逻辑结构1. 分解复杂的存储过程2. 避免过度使用游标 五、事务处…...

普中51单片机:数码管显示原理与实现详解(四)

文章目录 引言数码管的结构数码管的工作原理静态数码管电路图开发板IO连接图代码演示 动态数码管实现步骤数码管驱动方式电路图开发板IO连接图真值表代码演示1代码演示2代码演示3 引言 数码管(Seven-Segment Display)是一种常见的显示设备,广…...

web缓存代理服务器

一、web缓存代理 web代理的工作机制 代理服务器是一个位于客户端和原始(资源)服务器之间的服务器,为了从原始服务器取得内容,客户端向代理服务器发送一个请求,并指定目标原始服务器,然后代理服务器向原始…...

容器:queue(队列)

以下是关于queue容器的总结 1、构造函数&#xff1a;queue [queueName] 2、添加、删除元素: push() 、pop() 3、获取队头/队尾元素&#xff1a;front()、back() 4、获取栈的大小&#xff1a;size() 5、判断栈是否为空&#xff1a;empty() #include <iostream> #include …...

探索 WebKit 的后台同步新纪元:Web Periodic Background Synchronization 深度解析

探索 WebKit 的后台同步新纪元&#xff1a;Web Periodic Background Synchronization 深度解析 随着 Web 应用逐渐成为我们日常生活中不可或缺的一部分&#xff0c;用户对应用的响应速度和可靠性有了更高的期待。Web Periodic Background Synchronization API&#xff08;周期…...

ctfshow web入门 web338--web344

web338 原型链污染 comman.js module.exports {copy:copy };function copy(object1, object2){for (let key in object2) {if (key in object2 && key in object1) {copy(object1[key], object2[key])} else {object1[key] object2[key]}}}login.js var express …...

mupdf加载PDF显示中文乱码

现象 加载PDF显示乱码,提示非嵌入字体 non-embedded font using identity encoding调式 在pdf-font.c中加载字体 调试源码发现pdf文档的字体名字居然是GBK&#xff0c;估计又是哪个windows下写的pdf生成工具生成pdf 字体方法&#xff1a; static pdf_font_desc * load_cid…...

常用的限流工具Guava RateLimiter 或Redisson RRateLimiter

在分布式系统和高并发场景中&#xff0c;限流是一个非常常见且重要的需求。以下是一些常用的限流工具和库&#xff0c;包括它们的特点和使用场景&#xff1a; 1. Guava RateLimiter Google 的 Guava 库中的 RateLimiter 是一个简单且高效的限流工具&#xff0c;适用于单节点应…...

卷积神经网络(CNN)和循环神经网络(RNN) 的区别与联系

卷积神经网络&#xff08;CNN&#xff09;和循环神经网络&#xff08;RNN&#xff09;是两种广泛应用于深度学习的神经网络架构&#xff0c;它们在设计理念和应用领域上有显著区别&#xff0c;但也存在一些联系。 ### 卷积神经网络&#xff08;CNN&#xff09; #### 主要特点…...

Unity【入门】场景切换和游戏退出及准备

1、必备知识点场景切换和游戏退出 文章目录 1、必备知识点场景切换和游戏退出1、场景切换2、鼠标隐藏锁定相关3、随机数和自带委托4、模型资源的导入1、模型由什么构成2、Unity支持的模型格式3、如何指导美术同学导出模型4、学习阶段在哪里获取模型资源 2、小项目准备工作需求分…...

Python 函数递归

以下是一个使用递归计算阶乘的 Python 函数示例 &#xff1a; 应用场景&#xff1a; 1. 动态规划问题&#xff1a;在一些需要逐步求解子问题并利用其结果的动态规划场景中&#xff0c;递归可以帮助直观地表达问题的分解和求解过程。 2. 遍历具有递归结构的数据&#xff1a;如递…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...