Spring Boot与Apache Kafka Streams的集成
Spring Boot与Apache Kafka Streams的集成
大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!
一、Apache Kafka Streams简介
Apache Kafka Streams是一个用于构建实时流应用程序的库,基于Apache Kafka消息系统。它使开发者能够通过高级别的API处理输入流,执行转换和聚合操作,并生成输出流。Kafka Streams提供了内置的容错和恢复机制,支持事件时间处理,适用于实时数据流处理场景。
二、为什么选择Apache Kafka Streams?
在构建实时流应用程序时,Apache Kafka Streams具有以下优势:
- 简化架构:与使用独立的流处理框架相比,Kafka Streams直接构建在Kafka之上,减少了架构复杂性。
- 水平扩展:Kafka Streams应用程序可以水平扩展,处理大量数据而无需引入额外的复杂性。
- Exactly-once语义:Kafka Streams提供了端到端的Exactly-once语义,确保数据处理的准确性和一致性。
- 与Kafka集成:无缝集成Kafka生态系统,如消费者组、分区等概念,方便与现有Kafka应用集成。
三、使用Spring Boot集成Apache Kafka Streams
在Spring Boot中集成Apache Kafka Streams可以通过Spring Kafka Streams支持。以下是一个简单的示例,展示如何配置和使用Spring Boot与Kafka Streams:
1. 添加依赖
首先,在pom.xml
文件中添加Spring Kafka Streams依赖:
<dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId><version>2.8.0</version>
</dependency>
2. 配置Kafka连接
在application.properties
或application.yml
中配置Kafka连接信息:
spring.kafka.bootstrap-servers=localhost:9092
spring.kafka.consumer.group-id=my-group
3. 创建Kafka Streams处理拓扑
编写一个Kafka Streams处理拓扑,定义流处理逻辑:
package cn.juwatech.kafka.streams;import cn.juwatech.kafka.model.User;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.kstream.KStream;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafkaStreams;@Configuration
@EnableKafkaStreams
public class KafkaStreamsConfig {@Beanpublic KStream<String, User> process(StreamsBuilder builder) {KStream<String, User> stream = builder.stream("user-input-topic");stream.filter((key, user) -> user.getAge() > 18).to("adult-user-output-topic");return stream;}
}
4. 编写Kafka消费者和生产者
创建Kafka消费者和生产者,用于发送和接收Kafka消息:
package cn.juwatech.kafka.consumer;import cn.juwatech.kafka.model.User;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;@Component
public class UserConsumer {@KafkaListener(topics = "adult-user-output-topic", groupId = "my-group")public void consume(User user) {System.out.println("Received user: " + user);// Process the user data}
}
package cn.juwatech.kafka.producer;import cn.juwatech.kafka.model.User;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Component;@Component
public class UserProducer {@Autowiredprivate KafkaTemplate<String, User> kafkaTemplate;public void produce(User user) {kafkaTemplate.send("user-input-topic", user.getId(), user);}
}
5. 测试Kafka Streams应用程序
启动Spring Boot应用程序后,Kafka Streams处理拓扑将自动创建并开始处理流数据。使用Kafka命令行工具或自定义生产者发送消息到user-input-topic
,并观察adult-user-output-topic
中的处理结果。
四、总结
通过本文,我们详细介绍了如何在Spring Boot应用程序中集成Apache Kafka Streams,包括添加依赖、配置Kafka连接、编写Kafka Streams处理拓扑和消费者/生产者。Apache Kafka Streams作为强大的流处理框架,与Spring Boot的集成能够为应用程序提供可靠和高效的实时数据处理能力。
希望本文对你理解和应用Spring Boot与Apache Kafka Streams集成有所帮助!
微赚淘客系统3.0小编出品,必属精品!
相关文章:
Spring Boot与Apache Kafka Streams的集成
Spring Boot与Apache Kafka Streams的集成 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 一、Apache Kafka Streams简介 Apache Kafka Streams是一个用于构…...

Unity中使用VectorGraphics插件时,VectorUtils.RenderSpriteToTexture2D方法返回结果错误的解决方法
Unity中使用VectorGraphics插件时,如果使用VectorUtils.BuildSprite方法创建Sprite,那么得到的Sprite往往是一个三角网格数比较多的Sprite,如果想要得到使用贴图只有两个三角面的方形Sprite,可以使用该插件提供的VectorUtils.Rend…...

用MySQL+node+vue做一个学生信息管理系统(一):配置项目
先用npm init -y生成配置文件 在项目下新建src文件夹,app.js文件。src目录用来放静态资源文件,app.js是服务器文件,index.js是vue的入口文件 使用npm install express下载express框架 在app.js文件夹开启node服务,监听的端口为…...

2024年06月CCF-GESP编程能力等级认证Python编程二级真题解析
本文收录于专栏《Python等级认证CCF-GESP真题解析》,专栏总目录:点这里,订阅后可阅读专栏内所有文章。 一、单选题(每题 2 分,共 30 分) 第 1 题 小杨父母带他到某培训机构给他报名参加CCF组织的GESP认证…...

Unity动画系统(2)
6.1 动画系统基础2-3_哔哩哔哩_bilibili p316 模型添加Animator组件 动画控制器 AnimatorController AnimatorController 可以通过代码控制动画速度 建立动画间的联系 bool值的设定 trigger p318 trigger点击的时候触发,如喊叫,开枪及换子弹等&#x…...

深度网络现代实践 - 深度前馈网络之反向传播和其他的微分算法篇
序言 反向传播(Backpropagation,简称backprop)是神经网络训练过程中最关键的技术之一,尤其在多层神经网络中广泛应用。它是一种与优化方法(如梯度下降法)结合使用的算法,用于计算网络中各参数的…...

自动化设备上位机设计 四
目录 一 设计原型 二 后台代码 一 设计原型 二 后台代码 using SimpleTCP; using SqlSugar; using System.Text;namespace 自动化上位机设计 {public partial class Form1 : Form{SqlHelper sqlHelper new SqlHelper();SqlSugarClient dbContent null;bool IsRun false;i…...
[leetcode hot 150]第二十三题,合并K个升序链表
题目: 给你一个链表数组,每个链表都已经按升序排列。 请你将所有链表合并到一个升序链表中,返回合并后的链表。 示例 1: 输入:lists [[1,4,5],[1,3,4],[2,6]] 输出:[1,1,2,3,4,4,5,6] 解释:…...

MybatisPlus实现插入/修改数据自动设置时间
引言 插入数据时自动设置当前时间,更新数据时自动修改日期为修改时的日期。 使用MybatisPlus的扩展接口MetaObjectHandler 步骤 实现接口 实体类加注解 实现接口 package com.example.vueelementson.common;import com.baomidou.mybatisplus.core.handlers.M…...

Java语言程序设计篇一
Java语言概述 Java语言起源编程语言最新排名名字起源Java语言发展历程Java语言的特点Java虚拟机垃圾回收Java语言规范Java技术简介Java程序的结构Java程序注意事项:注释编程风格练习 Java语言起源 1990年Sun公司提出一项绿色计划。1992年语言开发成功最初取名为Oak…...
Calicoctl工具学习 —— 筑梦之路
官方文档: Calico Documentation | Calico Documentation 插件方式安装 calicoctl 工具 curl -o kubectl-calico -O -L "https://github.com/projectcalico/calicoctl/releases/download/v3.20.0/calicoctl"cp kubectl-calico /usr/bin/kubectl-calic…...

Wormhole Filters: Caching Your Hash on Persistent Memory——泛读笔记
EuroSys 2024 Paper 论文阅读笔记整理 问题 近似成员关系查询(AMQ)数据结构可以高效地近似确定元素是否在集合中,例如Bloom滤波器[10]、cuckoo滤波器[23]、quotient滤波器[8]及其变体。但AMQ数据结构的内存消耗随着数据规模的增长而快速增长…...
PyTorch学习之torch.transpose函数
PyTorch学习之torch.transpose函数 一、简介 torch.transpose 函数我们用于交换张量的维度。 二、语法 torch.transpose 函数用于交换给定张量的两个维度,其语法如下: torch.transpose(input, dim0, dim1)三、参数 input:待交换维度的张…...

Git仓库介绍
1. Github GitHub 本身是一个基于云端的代码托管平台,它提供的是远程服务,而不是一个可以安装在本地局域网的应用程序。因此,GitHub 不可以直接在本地局域网进行安装。 简介:GitHub是最流行的代码托管平台,提供了大量…...
人工智能笔记分享
文章目录 人工智能图灵测试分类分类与聚类的区别(重点)分类 (Classification)聚类 (Clustering) 特征提取 分类器(重点)特征提取为什么要进行特征提取?(重点)分类器 训练集、测试集大小&#x…...

秋招提前批面试经验分享(上)
⭐️感谢点开文章👋,欢迎来到我的微信公众号!我是恒心😊 一位热爱技术分享的博主。如果觉得本文能帮到您,劳烦点个赞、在看支持一下哈👍! ⭐️我叫恒心,一名喜欢书写博客的研究生在读…...
[AIGC] ClickHouse的表引擎介绍
ClickHouse是一种高性能的列式数据库管理系统,支持各种不同的表引擎。表引擎是数据库系统中的核心组件,它定义了数据的存储方式和访问方式。本文将介绍ClickHouse中常见的表引擎及其特点。 文章目录 一、MergeTree引擎二、ReplacingMergeTree引擎三、Sum…...

关于新装Centos7无法使用yum下载的解决办法
起因 之前也写了一篇类似的文章,但感觉有漏洞,这次想直接把漏洞补齐。 问题描述 在我们新装的Centos7中,如果想要用C编程,那就必须要用到yum下载,但是,很多新手,包括我使用yum下载就会遇到一…...

OpenEarthMap:全球高分辨率土地覆盖制图的基准数据集(开源来下载!!!)
OpenEarthMap由220万段5000张航拍和卫星图像组成,覆盖6大洲44个国家97个地区,在0.25-0.5m的地面采样距离上人工标注8类土地覆盖标签。我们提供8类标注:裸地、牧场、已开发空间、道路、树木、水、农业用地和建筑。类选择与现有的具有亚米GSD的产品和基准数…...

工作助手VB开发笔记(1)
1.思路 1.1 样式 样式为常驻前台的一个小窗口,小窗口上有三到四个按钮,为一级功能,是当前工作内容的常用功能窗口,有十个二级窗口,为选中窗口时的扩展选项,有若干后台功能,可选中至前台 可最…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...