当前位置: 首页 > news >正文

OpenEarthMap:全球高分辨率土地覆盖制图的基准数据集(开源来下载!!!)

OpenEarthMap由220万段5000张航拍和卫星图像组成,覆盖6大洲44个国家97个地区,在0.25-0.5m的地面采样距离上人工标注8类土地覆盖标签。我们提供8类标注:裸地、牧场、已开发空间、道路、树木、水、农业用地和建筑。类选择与现有的具有亚米GSD的产品和基准数据集(如LoveDA[49]和DeepGlobe[12])一致。该数据集可在https: //open-earth-map.org上获得。

图像来源

我们的策略是尽可能多地重用现有基准数据集的图像,并手动标注新的土地覆盖标签。我们选择了xBD[16]、Inria[30]、Open Cities AI[33]、SpaceNet[47]、Landcover。ai[3]、AIRS[8]、GeoNRW[1]、HTCD[38]等数据集,基于源图像可再分发、地面采样距离(GSD)等于或小于0.5m、图像具有地理坐标信息的条件。如果有足够多的区域图像,我们以省或城市的尺度定义该区域,我们以1024×1024像素的大小采样该区域的50-70张图像。我们采用的每个数据集中的图像数量是根据拍摄图像的大陆和国家的多样性和平衡来确定的。对于现有数据集未覆盖的国家和地区,收集了这些国家或地区公开的航空图像,以减轻区域差距,这是大多数现有基准数据集存在的问题。开放数据下载自OpenAerialMap[34]和地理空间机构[15,32]。有关归属的更多细节,请参阅附录。

除了这种地理多样性之外,我们的数据集还包括从不同平台(包括卫星、飞机和无人机)拍摄的混合图像。对于GSD小于0.25m的高分辨率图像,我们将图像重新采样到0.3m或0.5m,以考虑捕获区域的物体大小和视觉可解释性。基本上,每个区域的图像都是通过随机抽样和人工检查相结合的方式选择的。此外,如果源基准数据集中特定区域的图像数量非常大,我们使用顺序标记的数据(例如,每10张图像)和另一个回归模型训练分割模型来估计损失。然后,我们添加具有高预测损失值的图像,因为用可用标签训练的模型更难分割它们。

其他数据集介绍

OpenSentinelMap[20]的特点是利用Sentinel-2和OpenStreetMap的开放数据对全球进行全面覆盖,而DynamicEarthNet[44]则在高时间分辨率方面具有优势。OpenEarthMap在提供亚米级别的空间详细注释方面更进一步。与LoveDA[49]和DeepGlobe[12]进行了更详细的比较,它们的分辨率和类定义与OpenEarthMap相似。图4a显示了三个数据集的类比例的比较。需要注意的是,LoveDA不包括牧场,而在DeepGlobe的土地覆盖分类数据集中,建筑物和道路被包括在城市类别中。在OpenEarthMap中不存在主导职业,职业比例相对平衡。单幅图像中段数的归一化直方图如图4b所示。在图像大小方面,LoveDA与OpenEarthMap相同(1024×1024像素),而DeepGlobe更大(2448×2448像素)。OpenEarthMap的直方图有一个非常长的尾巴,在OpenEarthMap的每个图像中显示的片段数量比其他数据集大得多。OpeneEarthMap的空间细节标注体现在第5节和第6节中介绍的跨数据集评估和训练模型的样本外预测结果中。

相关文章:

OpenEarthMap:全球高分辨率土地覆盖制图的基准数据集(开源来下载!!!)

OpenEarthMap由220万段5000张航拍和卫星图像组成,覆盖6大洲44个国家97个地区,在0.25-0.5m的地面采样距离上人工标注8类土地覆盖标签。我们提供8类标注:裸地、牧场、已开发空间、道路、树木、水、农业用地和建筑。类选择与现有的具有亚米GSD的产品和基准数…...

工作助手VB开发笔记(1)

1.思路 1.1 样式 样式为常驻前台的一个小窗口,小窗口上有三到四个按钮,为一级功能,是当前工作内容的常用功能窗口,有十个二级窗口,为选中窗口时的扩展选项,有若干后台功能,可选中至前台 可最…...

WAWA鱼曲折的大学四年回忆录

声明:本文内容纯属个人主观臆断,如与事实不符,请参考事实 前言: 早想写一下大学四年的总结了,但总是感觉无从下手,不知道从哪里开始写,通过这篇文章主要想做一个记录,并从现在的认…...

Go 依赖注入设计模式

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…...

使用React复刻ThreeJS官网示例——keyframes动画

最近在看three.js相关的东西,想着学习一下threejs给的examples。源码是用html结合js写的,恰好最近也在学习react,就用react框架学习一下。 本文参考的是threeJs给的第一个示例 three.js examples (threejs.org) 一、下载threeJS源码 通常我们…...

嵌入式linux面试1

1. linux 1.1. Window系统和Linux系统的区别 linux区分大小写windows在dos(磁盘操作系统)界面命令下不区分大小写; 1.2. 文件格式区分 windows用扩展名区分文件;如.exe代表执行文件,.txt代表文本文件,.…...

智能交通(3)——Learning Phase Competition for Traffic Signal Control

论文分享 https://dl.acm.org/doi/pdf/10.1145/3357384.3357900https://dl.acm.org/doi/pdf/10.1145/3357384.3357900 论文代码 https://github.com/gjzheng93/frap-pubhttps://github.com/gjzheng93/frap-pub 摘要 越来越多可用的城市数据和先进的学习技术使人们能够提…...

【扩散模型】LCM LoRA:一个通用的Stable Diffusion加速模块

潜在一致性模型:[2310.04378] Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference (arxiv.org) 原文:Paper page - Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference (…...

【PYG】pytorch中size和shape有什么不同

一般使用tensor.shape打印维度信息,因为简单直接 在 PyTorch 中,size 和 shape 都用于获取张量的维度信息,但它们之间有细微的区别。下面是它们的定义和用法: size: size 是一个方法(size())和…...

备份服务器出错怎么办?

在企业的日常运营中,备份服务器扮演着至关重要的角色,它确保了数据的安全和业务的连续性。然而,备份服务器也可能遇到各种问题,如备份失败、数据损坏或备份系统故障等。这些问题可能导致数据丢失或业务中断,给企业带来…...

数据库(表)

要求如下: 一:数据库 1,登录数据库 mysql -uroot -p123123 2,创建数据库zoo create database zoo; Query OK, 1 row affected (0.01 sec) 3,修改字符集 mysql> use zoo;---先进入数据库zoo Database changed …...

Feign-未完成

Feign Java中如何实现接口调用?即如何发起http请求 前三种方式比较麻烦,在发起请求前,需要将Java对象进行序列化转为json格式的数据,才能发送,然后进行响应时,还需要把json数据进行反序列化成java对象。 …...

# [0705] Task06 DDPG 算法、PPO 算法、SAC 算法【理论 only】

easy-rl PDF版本 笔记整理 P5、P10 - P12 joyrl 比对 补充 P11 - P13 OpenAI 文档整理 ⭐ https://spinningup.openai.com/en/latest/index.html 最新版PDF下载 地址:https://github.com/datawhalechina/easy-rl/releases 国内地址(推荐国内读者使用): 链…...

Open3D 点云CPD算法配准(粗配准)

目录 一、概述 二、代码实现 2.1关键函数 2.2完整代码 三、实现效果 3.1原始点云 3.2配准后点云 一、概述 在Open3D中,CPD(Coherent Point Drift,一致性点漂移)算法是一种经典的点云配准方法,适用于无序点云的非…...

04-ArcGIS For JavaScript的可视域分析功能

文章目录 综述代码实现代码解析结果 综述 在数字孪生或者实景三维的项目中,视频融合和可视域分析,一直都是热点问题。Cesium中,支持对阴影的后处理操作,通过重新编写GLSL代码就能实现视域和视频融合的功能。ArcGIS之前支持的可视…...

Nestjs基础

一、创建项目 1、创建 安装 Nest CLI(只需要安装一次) npm i -g nestjs/cli 进入要创建项目的目录,使用 Nest CLI 创建项目 nest new 项目名 运行项目 npm run start 开发环境下运行,自动刷新服务 npm run start:dev 2、…...

DDL:针对于数据库、数据表、数据字段的操作

数据库的操作 # 查询所有数据 SHOW DATABASE; #创建数据库 CREATE DATABASE 2404javaee; #删除数据库 DROP DATABASE 2404javaee; 数据表的操作 #创建表 CREATE TABLE s_student( name VARCHAR(64), s_sex VARCHAR(32), age INT(3), salary FLOAT(8,2), c_course VARC…...

昇思学习打卡-5-基于Mindspore实现BERT对话情绪识别

本章节学习一个基本实践–基于Mindspore实现BERT对话情绪识别 自然语言处理任务的应用很广泛,如预训练语言模型例如问答、自然语言推理、命名实体识别与文本分类、搜索引擎优化、机器翻译、语音识别与合成、情感分析、聊天机器人与虚拟助手、文本摘要与生成、信息抽…...

Java中 普通for循环, 增强for循环( foreach) List中增删改查的注意事项

文章目录 俩种循环遍历增加删除1 根据index删除2 根据对象删除 修改 俩种循环 Java中 普通for循环, 增强for循环( foreach) 俩种List的遍历方式有何异同,性能差异? 普通for循环(使用索引遍历): for (int…...

昇思25天学习打卡营第19天|LSTM+CRF序列标注

概述 序列标注指给定输入序列,给序列中每个Token进行标注标签的过程。序列标注问题通常用于从文本中进行信息抽取,包括分词(Word Segmentation)、词性标注(Position Tagging)、命名实体识别(Named Entity Recognition, NER)等。 条件随机场&#xff08…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...

【单片机期末】单片机系统设计

主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...