当前位置: 首页 > news >正文

基于Yolv5s的口罩检测

1.Yolov5算法原理和网络结构

        YOLOv5按照网络深度和网络宽度的大小,可以分为YO-LOv5s、YOLOv5m、YOLOv5l、YOLOv5x。本文使用YOLOv5s,它的网络结构最为小巧,同时图像推理速度最快达0.007s。YO-LOv5的网络结构主要由四部分组成,分别是Input、Backbone、Neck、Head,其网络结构图如图所示。

Yolov5网络结构图

1.1Input端

        Input使用了Mosaic数据增强、自适应锚框计算、图片尺寸处理。Mosaic数据增强把4张图片,采用随机缩放、随机裁剪、随机排布的方式进行拼接,极大地丰富了检测数据集,尤其是增加了很多小目标,让网络结构的鲁棒性更好。在YOLOv5算法中,不同的数据集,会设定不同初始长宽的锚框,在训练数据的时候,在初始锚框的基础上得到预测框,把它和真实框比较,算出两者差距,反向更新,迭代更新网络结构参数,自适应锚框计算可以得到最佳锚框值。在目标检测算法中,要训练图片的尺寸都不相同,要把原始图片统一缩放到一个固定尺寸,再输入到网络中进行训练,本文图片的尺寸为608×608×3。

1.2Backone

        Backbone包含Focus、CSP和SPP。Focus不存在于其他YOLO算法中,主要是用来进行切片操作,例如608×608×3的图像在Focus结构中进行切片操作后,变成304×304×12大小,在进行32个卷集核的卷积操作,成为304×304×32的特征图。YOLOv4中只有一种CSP结构,而YOLOv5中有两种,CSP1_x和CSP2_x,它们分别应用于Backbone和Neck中,YOLOv4的CSP结构只存在Backbone中,CSP结构如图1所示,其中CSP1_x的x表示CSP1中有x个Resunit(残差组件),CSP2_x的x表示CSP2中有2x个CBL,x影响着网络结构的深度。在Backbone中,采用SPP(空间向量金字塔池化),对特征图做最大池化,将不同尺度的特征图拼接在一起。

(1)Focus结构

        Focus结构中关键的是切片操作,切片操作演示过程,将4×4×3的特征图经过切片处理,变成2×2×12的特征图。将608×608×3的三通道图像输进Focus结构,经过切片操作,先变成304×304×12的特征图,之后,经过使用32个卷积核的卷积操作,最终变成304×304×32的特征图。需要注意的是,YOLOv5s网络结构中的Focus结构使用了32个卷积核,进行卷积操作,而其他三种网络结构,使用的卷积核数量有所增加。

Focus结构图

(2)CSP结构

        YOLOv5中有两种结构的CSP,CSP1_X结构在Backbone主干网络中,另一种CSP2_X结构在Neck中。对于Backbone的主干网络结构,CSP模块中的卷积核大小都是3*3,步进值为2,假如输入的图像尺寸是608*608,那么它的特征图变化的规律是:608*608->304*304->152*152->76*76->38*38->19*19,最终得到了一个19*19大小的特征图。

        使用CSP模块的优点:1.增强网络的学习能力,使得训练出来的模型既能保持轻量化,又能有较高的准确性。2.降低计算瓶颈。3.降低内存成本。

CSP结构图

(3)SPP结构

        SPP结构详细介绍:https://www.cnblogs.com/zongfa/p/9076311.html

SPP结构图

1.3Neck

        Neck中采用了FPN+PAN的结构,FPN是自上而下的,利用上采样的方式对信息进行传递融合,获得预测的特征图。PAN采用自底向上的特征金字塔。具体结构如图所示。

FPN+PAN结构图 

1.4Prediction

        Prediction包括Bounding box损失函数和非极大值抑制(NMS)。YOLOv5中使用GIOU_Loss作为损失函数,有效解决了边界框不重合时问题。在目标检测预测结果处理阶段,针对出现的众多目标框的筛选,采用加权NMS操作,获得最优目标框。

  1. GIOU_Loss损失函数

        目标检测算法的损失函数一般由Classificition Loss(分类损失函数)以及Bounding Box Regeression Loss(回归损失函数)两大部分组成。回归损失函数在近几年的发展过程是:Smooth L1 Loss->IOU_Loss(2016)->GIOU_Loss(2019)->DIOU_Loss(2020)->CIOU_Loss(2020)。

IOU_Loss图

 图是IOU_Loss,可以看出黄色框是预测框,蓝色框是真实框。假设预测框和真实框的交集为A,并集为B,IOU定义为交集A除以并集B,IOU的Loss为:

        IOU的Loss比较简单,但存在两个问题。

        问题1:预测框和真实框不相交的情况,如图(a)状态1所示,此时IOU为0,无法反应出预测框和真实框距离的远近,此时损失函数不能求导,IOU_Loss损失函数无法优化预测框和真实框不相交的情况

特殊状态的IOU_Loss图

        问题2:当预测框和真实框大小相同,IOU也可能会相同,如上图(b)(c)的状态2和状态3的情况所示,此时IOU_Loss损失函数也不能区分这两种情况的不同。因此使用GIOU_Loss来进行改进。

GIOU_Loss图

         如上图是GIOU_Loss,黄色框是预测框,蓝色框是真实框,令预测框和真实框的最小外接矩形为集合C,差集定义为集合C和并集B的差,则GIOU_Loss为:

        GIOU_Loss损失函数提高了衡量相交尺度的方式,减少了单纯IOU_Loss时的不足。

2.实验及结果

2.1实验数据集及实验环境

2.1.1数据集

        数据集采用Kaggle上的Face Mask Detection,数据集一共853张图片,划分为三个类,一种是戴口罩的,一种是不戴口罩的,还有一种是没有戴好口罩的。数据集链接:https://www.kaggle.com/andrewmvd/face-mask-detection

        数据集展示:

        下载下来后,这些数据集还不能直接使用。因为yolov5不支持xml文件处理,而是支持txt文件。所以首先将这些数据按照下图这样的目录格式整理好:

        然后运行下面的代码,将该数据集转换成Yolov5能够使用的数据集:

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import random
from shutil import copyfileclasses = ["with_mask", "without_mask","mask_weared_incorrect"]
# classes=["ball"]TRAIN_RATIO = 80def clear_hidden_files(path):dir_list = os.listdir(path)for i in dir_list:abspath = os.path.join(os.path.abspath(path), i)if os.path.isfile(abspath):if i.startswith("._"):os.remove(abspath)else:clear_hidden_files(abspath)def convert(size, box):dw = 1. / size[0]dh = 1. / size[1]x = (box[0] + box[1]) / 2.0y = (box[2] + box[3]) / 2.0w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn (x, y, w, h)def convert_annotation(image_id):in_file = open('VOCdevkit/VOC2007/Annotations/%s.xml' % image_id)out_file = open('VOCdevkit/VOC2007/YOLOLabels/%s.txt' % image_id, 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')in_file.close()out_file.close()wd = os.getcwd()
wd = os.getcwd()
data_base_dir = os.path.join(wd, "VOCdevkit/")
if not os.path.isdir(data_base_dir):os.mkdir(data_base_dir)
work_sapce_dir = os.path.join(data_base_dir, "VOC2007/")
if not os.path.isdir(work_sapce_dir):os.mkdir(work_sapce_dir)
annotation_dir = os.path.join(work_sapce_dir, "Annotations/")
if not os.path.isdir(annotation_dir):os.mkdir(annotation_dir)
clear_hidden_files(annotation_dir)
image_dir = os.path.join(work_sapce_dir, "JPEGImages/")
if not os.path.isdir(image_dir):os.mkdir(image_dir)
clear_hidden_files(image_dir)
yolo_labels_dir = os.path.join(work_sapce_dir, "YOLOLabels/")
if not os.path.isdir(yolo_labels_dir):os.mkdir(yolo_labels_dir)
clear_hidden_files(yolo_labels_dir)
yolov5_images_dir = os.path.join(data_base_dir, "images/")
if not os.path.isdir(yolov5_images_dir):os.mkdir(yolov5_images_dir)clear_hidden_files(yolov5_images_dir)yolov5_labels_dir = os.path.join(data_base_dir, "labels/")if not os.path.isdir(yolov5_labels_dir):os.mkdir(yolov5_labels_dir)clear_hidden_files(yolov5_labels_dir)yolov5_images_train_dir = os.path.join(yolov5_images_dir, "train/")if not os.path.isdir(yolov5_images_train_dir):os.mkdir(yolov5_images_train_dir)clear_hidden_files(yolov5_images_train_dir)yolov5_images_test_dir = os.path.join(yolov5_images_dir, "val/")if not os.path.isdir(yolov5_images_test_dir):os.mkdir(yolov5_images_test_dir)clear_hidden_files(yolov5_images_test_dir)yolov5_labels_train_dir = os.path.join(yolov5_labels_dir, "train/")if not os.path.isdir(yolov5_labels_train_dir):os.mkdir(yolov5_labels_train_dir)clear_hidden_files(yolov5_labels_train_dir)yolov5_labels_test_dir = os.path.join(yolov5_labels_dir, "val/")if not os.path.isdir(yolov5_labels_test_dir):os.mkdir(yolov5_labels_test_dir)clear_hidden_files(yolov5_labels_test_dir)train_file = open(os.path.join(wd, "yolov5_train.txt"), 'w')test_file = open(os.path.join(wd, "yolov5_val.txt"), 'w')train_file.close()test_file.close()train_file = open(os.path.join(wd, "yolov5_train.txt"), 'a')test_file = open(os.path.join(wd, "yolov5_val.txt"), 'a')list_imgs = os.listdir(image_dir)  # list image filesprob = random.randint(1, 100)print("Probability: %d" % prob)for i in range(0, len(list_imgs)):path = os.path.join(image_dir, list_imgs[i])if os.path.isfile(path):image_path = image_dir + list_imgs[i]voc_path = list_imgs[i](nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path))(voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path))annotation_name = nameWithoutExtention + '.xml'annotation_path = os.path.join(annotation_dir, annotation_name)label_name = nameWithoutExtention + '.txt'label_path = os.path.join(yolo_labels_dir, label_name)prob = random.randint(1, 100)print("Probability: %d" % prob)if (prob < TRAIN_RATIO):  # train datasetif os.path.exists(annotation_path):train_file.write(image_path + '\n')convert_annotation(nameWithoutExtention)  # convert labelcopyfile(image_path, yolov5_images_train_dir + voc_path)copyfile(label_path, yolov5_labels_train_dir + label_name)else:  # test datasetif os.path.exists(annotation_path):test_file.write(image_path + '\n')convert_annotation(nameWithoutExtention)  # convert labelcopyfile(image_path, yolov5_images_test_dir + voc_path)copyfile(label_path, yolov5_labels_test_dir + label_name)
train_file.close()
test_file.close()

         运行完上面的代码后,会生成下面的目录格式:

        可以看到通过运行上面的代码,在VOCdevkit目录下生成了images和lables文件夹,这两个文件夹下又有train和val文件夹,这个就是需要的数据集了。其中train对应的就是训练集,val对应的就是测试集。

2.2.2数据集标注

        因为数据集中已经给定了标注好的xml文件,这里就不再进行标注。数据集标注主要是通过labelimg进行标注。

2.2.3实验环境

       实验环境采用Ubuntu 20.04.2+双路Intel 4110CPU+64G内存+RTX2080Ti显卡+Anaconda3进行实验。

2.2Yolov5网络训练

       一般为了缩短网络的训练时间,并达到更好的精度,我们一般加载预训练权重进行网络的训练。而yolov5的5.0版本给我们提供了几个预训练权重,我们可以对应我们不同的需求选择不同的版本的预训练权重。通过如下的图可以获得权重的名字和大小信息,可以预料的到,预训练权重越大,训练出来的精度就会相对来说越高,但是其检测的速度就会越慢。预训练权重可以通过这个网址进行下载,本次训练自己的数据集用的预训练权重为yolov5s.pt。

        我们先将Yolov5通过git将代码pull到本地,可以看到如下的目录格式:

        然后我们将下载好的Yolov5.pt模型文件放在Yolov5的根目录下。将数据集文件也放在Yolov5根目录下:

        现在来对代码的整体目录做一个介绍:

├── data:主要是存放一些超参数的配置文件(这些文件(yaml文件)是用来配置训练集和测试集还有验证集的路径的,其中还包括目标检测的种类数和种类的名称);还有一些官方提供测试的图片。如果是训练自己的数据集的话,那么就需要修改其中的yaml文件。但是自己的数据集不建议放在这个路径下面,而是建议把数据集放到yolov5项目的同级目录下面。

├── models:里面主要是一些网络构建的配置文件和函数,其中包含了该项目的四个不同的版本,分别为是s、m、l、x。从名字就可以看出,这几个版本的大小。他们的检测测度分别都是从快到慢,但是精确度分别是从低到高。这就是所谓的鱼和熊掌不可兼得。如果训练自己的数据集的话,就需要修改这里面相对应的yaml文件来训练自己模型。

├── utils:存放的是工具类的函数,里面有loss函数,metrics函数,plots函数等等。

├── weights:放置训练好的权重参数。

├── detect.py:利用训练好的权重参数进行目标检测,可以进行图像、视频和摄像头的检测。

├── train.py:训练自己的数据集的函数。

├── test.py:测试训练的结果的函数。

├──requirements.txt:这是一个文本文件,里面写着使用yolov5项目的环境依赖包的一些版本,可以利用该文本导入相应版本的包。

        然后我们修改models/yolov5s.yaml文件将nc改成3,因为我们是个3分类问题。并且在data目录下创建一个biaoqing.yaml文件,其内容为:

train: Mask_Datas/images/train  # train images (relative to 'path') 128 images
val: Mask_Datas/images/val  # val images (relative to 'path') 128 images# Classes
nc: 3  # number of classes
names: ['with_mask', 'without_mask', 'mask_weared_incorrect']  # class names

        里面指定了训练集和测试集的路径,以及分类的内容。

        然后我们修改Yolov5根目录下的train.py文件,修改超参数如下图。其中—weights指定了预训练权重,--cfg指定预训练权重的配置文件,--data指定数据集的配置文件。还有一些参数比如—epochs指定了训练的轮数,默认是300轮,可以根据需要进行修改。还有--batch-size指定一次读取多少张照片,一般都是指定8的倍数张。根据自己的电脑性能进行修改。

        修改完上面的参数后,我们将代码上传到了运行环境如下:

        通过requirements.txt安装了所需要的库。直接运行python train.py即可开始进行训练,下面是训练图

        经过200轮训练后,我们生成了一个best.pt,也就是在这200轮训练得出来的最后的权重文件。

2.3实验结果与分析 

 

        我们查看results.png文件如下图:

训练过程中随着迭代次数增加,各种数值变化,如上图所示,图中各个数值的含义如下:

GIo U:数值越接近0,目标框画的越准确。

Objectness:数值越接近0,对目标检测得越准确。

Classification:数值越接近0,目标分类越准确。

Precision:准确率,即标出的正确目标个数除以标出的目标总个数,越接近1,准确率越高。

Recall:召回率,即标出的正确目标个数除以需要标出的目标总个数,越接近1,准确率越高。

m AP@0.5和m AP@0.5:0.95:AP是用Precision和Recall作为两坐标轴作图后围成的面积,越接近1,准确率越高。

置信度图

                     P-R图

 

混淆矩阵 

 实验效果:

相关文章:

基于Yolv5s的口罩检测

1.Yolov5算法原理和网络结构 YOLOv5按照网络深度和网络宽度的大小&#xff0c;可以分为YO-LOv5s、YOLOv5m、YOLOv5l、YOLOv5x。本文使用YOLOv5s&#xff0c;它的网络结构最为小巧&#xff0c;同时图像推理速度最快达0.007s。YO-LOv5的网络结构主要由四部分组成&#xff0c;分别…...

Linux基本命令

Linux基本命令Linux的目录结构Linux命令入门目录切换相关命令&#xff08;cd/pwd&#xff09;相对路径、绝对路径和特殊路径符创建目录命令&#xff08;mkdir&#xff09;文件操作命令part1 (touch、cat、more)文件操作命令part2 (cp、mv、rm&#xff09;查找命令 (which、find…...

云原生场景下的安全左移

本博客地址&#xff1a;https://security.blog.csdn.net/article/details/129430859 一、安全左移概述 安全左移需要考虑开发安全、软件供应链安全、镜像仓库、配置核查这四个部分。 首先是开发安全&#xff0c;安全团队需要关注代码漏洞&#xff0c;比如使用代码检查工具进…...

mysql面试经典问题

文章目录 1. 能说下myisam 和 innodb的区别吗?2. 说下mysql的索引有哪些吧,聚簇和非聚簇索引又是什么?3. 那你知道什么是覆盖索引和回表吗?4. 锁的类型有哪些呢5. 你能说下事务的基本特性和隔离级别吗?6. 那ACID靠什么保证的呢?7. 那你说说什么是幻读,什么是MVCC?幻读什…...

微信小程序|基于小程序+C#制作一个考试答题小程序

基于小程序+C#制作一个考试答题小程序打破传统线下考试答题的边界线问题,使考试不用再局限与某个统一的场所,只要有设备,哪里都能考试。 一、小程序...

【1605. 给定行和列的和求可行矩阵】

来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 描述&#xff1a; 给你两个非负整数数组 rowSum 和 colSum &#xff0c;其中 rowSum[i] 是二维矩阵中第 i 行元素的和&#xff0c; colSum[j] 是第 j 列元素的和。换言之你不知道矩阵里的每个元素&#xff0c;但是你知…...

Linux命令之nano命令

一、nano命令简介 nano是一个小型、免费、友好的编辑器&#xff0c;旨在取代非免费Pine包中的默认编辑器Pico。nano不仅复制了Pico的外观&#xff0c;还实现了Pico中一些缺失&#xff08;或默认禁用&#xff09;的功能&#xff0c;例如“搜索和替换”和“转到行号和列号”。nan…...

IT项目管理(作业1)

一.单选题&#xff08;共12题,100.0分&#xff09; 1.以下哪项是项目的一个实例?( ) A、改进现有的业务流程或程序B、为公司运营提供信息技术支持C、批量生产一种新近开发出来的家用电冰箱D、管理一个公司 我的答案&#xff1a;A 2.下列哪项不能成为项目结束的理由?( ) A…...

蓝桥杯嵌入式(G4系列):串口收发

前言&#xff1a; 在整个蓝桥杯考试中涉及串口的次数还是较多&#xff0c;这里写下这篇博客&#xff0c;记录一下自己的学习过程。 STM32Cubemx配置&#xff1a; 首先&#xff0c;我们点击左侧的Connectivity选择USART1进行如下配置。 使能串口中断 在左侧的管脚配置上也要做出…...

「兔了个兔」玉兔踏青,纯CSS实现瑞兔日历(附源码)

&#x1f482;作者简介&#xff1a; THUNDER王&#xff0c;一名热爱财税和SAP ABAP编程以及热爱分享的博主。目前于江西师范大学会计学专业大二本科在读&#xff0c;同时任汉硕云&#xff08;广东&#xff09;科技有限公司ABAP开发顾问。在学习工作中&#xff0c;我通常使用偏后…...

第17章 关于局部波动率的一些总结

这学期会时不时更新一下伊曼纽尔德曼&#xff08;Emanuel Derman&#xff09; 教授与迈克尔B.米勒&#xff08;Michael B. Miller&#xff09;的《The Volatility Smile》这本书&#xff0c;本意是协助导师课程需要&#xff0c;发在这里有意的朋友们可以学习一下&#xff0c;思…...

反转链表合并两个有序链表链表分割链表的回文结构相交链表

反转链表来源&#xff1a;杭哥206. 反转链表 - 力扣&#xff08;LeetCode&#xff09;typedef struct ListNode ListNode; struct ListNode* reverseList(struct ListNode* head) {if (headNULL){return NULL;}ListNode* prevhead;ListNode* curhead->next;ListNode* furNUL…...

联想触摸板只能单击,二指三指失效

问题背景 这问题是我笔记本两三年前重装win10系统后出现的&#xff0c;当时有鼠标懒得弄。今天发现没鼠标后&#xff0c;触摸板连二指滑动都没有太麻烦了&#xff0c;所以决定弄一下。 联想笔记本&#xff0c;win10系统重装后出现的问题。 1.鲁大师&#xff0c;联想电脑管家 …...

mysql 删除表卡死,或是截断(truncate)卡死解决办法

利用工具进行truncate表的时候&#xff0c;一直运行&#xff0c;运行了十几分钟也没有成功。中止之后再运行也是一样。但是删除表的数据以及查询表数据都是可以的。猜测是锁死了。 使用 show processlist; 发现Waiting for table metadata lock 问题&#xff1b; mysql> s…...

ORACLE P6 EPPM 架构及套件介绍(源自Oracle Help)

引言 借助官方帮助的内容&#xff0c; 我水一篇文章&#xff0c;翻译了下文 P6EPPM架构 P6各套件 P6&#xff1a;大多数用户几乎完全依赖在标准网络浏览器中运行的 P6 网络应用程序。简称为 P6&#xff0c;它是管理项目的主要界面。P6 移动版&#xff1a;允许团队成员提供任…...

Android开发面试:数据结构与算法知识答案精解

目录 数据结构与算法 线性表 数组 链表 栈 队列 树 二叉树 红黑树 哈夫曼树 排序算法 冒泡排序 选择排序 插入排序 希尔排序 堆排序 快速排序 归并排序 查找算法 线性查找 二分查找 插值查找 斐波拉契查找 树表查找 分块查找 哈希查找 动态规划算法…...

京东前端手写面试题集锦

实现call方法 call做了什么: 将函数设为对象的属性执行和删除这个函数指定this到函数并传入给定参数执行函数如果不传入参数&#xff0c;默认指向为 window // 模拟 call bar.mycall(null); //实现一个call方法&#xff1a; // 原理&#xff1a;利用 context.xxx self obj.…...

【JDK动态代理】及【CGLib动态代理】:Java的两种动态代理方式

Java的两种动态代理方式动态代理是什么&#xff1f;JDK动态代理CGLib动态代理CGLib 底层原理CGLib 实现步骤两者区别Spring AOP原理--动态代理动态代理是什么&#xff1f; 动态代理就是&#xff0c;在程序运行期&#xff0c;创建目标对象的代理对象&#xff0c;并对目标对象中的…...

《程序员面试金典(第6版)》面试题 04.05. 合法二叉搜索树

题目描述 实现一个函数&#xff0c;检查一棵二叉树是否为二叉搜索树。 示例 1: 输入: 2/ \1 3输出: true 示例 2: 输入: 5/ \1 4/ \3 6输出: false 解释: 输入为: [5,1,4,null,null,3,6]。 根节点的值为 5 &#xff0c;但是其右子节点值为 4 。 解题思路与代码 使用…...

Nginx 反向代理技术梳理

Nginx 反向代理技术梳理 使用反向代理脑图 域名 A 可以解析找到 CDN 缓存 用户点击 APP 即通过 URL 发送 HTTPS 请求域名会进入阿里云的 DNS 服务器&#xff0c;解析域名会做第一级负载均衡通过 CDN 解析出域名&#xff0c;通过阿里云配置转发到 CDN 缓存服务器 CDN 有数据则直…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...