当前位置: 首页 > news >正文

Open3D 计算点云的马氏距离

目录

一、概述

1.1原理

1.2应用

二、代码实现

三、实现效果

3.1原始点云

3.2计算后点云


一、概述

1.1原理

        马氏距离(Mahalanobis Distance)是一种度量多维数据点与数据分布中心之间距离的方法。与欧几里得距离不同,马氏距离考虑了数据的协方差结构,因此能够有效地衡量不同维度之间的相关性。

1.2应用

在点云处理中,马氏距离可以用于以下几种应用:

  1. 异常检测:识别与其他点显著不同的点,这些点可能是噪声或异常值。
  2. 聚类分析:根据点与均值点的马氏距离,确定点属于哪个簇。马氏距离能够有效地处理数据的相关性和不同尺度的问题。
  3. 形状分析和匹配:用于分析和匹配三维形状,尤其是在形状具有某种统计分布的情况下。
  4. 点云分割:结合马氏距离,可以更好地将点云分割成不同的区域或对象。

二、代码实现

2.1关键函数

        def compute_mahalanobis_distance(self): # real signature unknown; restored from __doc__"""compute_mahalanobis_distance(self)Function to compute the Mahalanobis distance for points in a point cloud. See: https://en.wikipedia.org/wiki/Mahalanobis_distance.Returns:open3d.utility.DoubleVector"""pass

2.2完整代码

import open3d as o3d
import numpy as np
from matplotlib import pyplot as plt# 读取点云
pcd = o3d.io.read_point_cloud("hand.pcd")
print(pcd)
# 计算马氏距离
madist = pcd.compute_mahalanobis_distance()
madist = np.array(madist)
print(madist)
# 使用伪颜色显示最近邻点
density_colors = plt.get_cmap('plashand')((madist - madist.min()) / (madist.max() - madist.min()))
density_colors = density_colors[:, :3]
pcd.colors = o3d.utility.Vector3dVector(density_colors)
o3d.visualization.draw_geometries([pcd], window_name="计算马氏距离",width=1024, height=768,left=50, top=50,mesh_show_back_face=False)

三、实现效果

3.1原始点云

3.2计算后点云

相关文章:

Open3D 计算点云的马氏距离

目录 一、概述 1.1原理 1.2应用 二、代码实现 三、实现效果 3.1原始点云 3.2计算后点云 一、概述 1.1原理 马氏距离(Mahalanobis Distance)是一种度量多维数据点与数据分布中心之间距离的方法。与欧几里得距离不同,马氏距离考虑了数据…...

Java事务(Transaction)

Java事务(Transaction)是数据库管理系统执行过程中的一个逻辑单位,由一个有限的数据库操作序列组成,这些操作要么全部执行,要么全部不执行,是一个不可分割的工作单位。事务的引入主要是为了解决并发操作数据…...

算法 —— 二分查找

目录 二分查找 在排序数组中查找元素的第一个和最后一个位置 搜索插入位置 x的平方根 山峰数组的峰顶索引 寻找峰值 搜索旋转排序数组中的最⼩值 点名 二分查找模板分为三种:1、朴素的二分模板 2、查找左边界的二分模板 3、查找右边界的二分模板&#xf…...

Mysql explain语句详解与实例展示

首先简单介绍sql: SQL语言共分为四大类:数据查询语言DQL,数据操纵语言DML,数据定义语言DDL,数据控制语言DCL。 1. 数据查询语言DQL 数据查询语言DQL基本结构是由SELECT子句,FROM子句,WHERE子句…...

Python基础问题汇总

为什么学习Python? 易学易用:Python语法简洁清晰,易于学习。广泛的应用领域:适用于Web开发、数据科学、人工智能、自动化脚本等多种场景。强大的库支持:拥有丰富的第三方库,如NumPy、Pandas、TensorFlow等…...

【讲解下iOS语言基础】

🌈个人主页: 程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…...

【网络安全】实验一(网络拓扑环境的搭建)

一、本次实验的实验目的 学习利用 VMware 创建虚拟环境 学习利用 VMware 搭建各自网络拓扑环境 二、创建虚拟机 三、克隆虚拟机 选择克隆的系统必须处于关机状态。 方法一: 方法二: 需要修改克隆计算机的名字,避免产生冲突。 四、按照要求完…...

Docker-基础

一,Docker简介,功能特性与应用场景 1.1 Docker简介 Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器…...

《昇思25天学习打卡营第14天|onereal》

第14天学习内容如下: Diffusion扩散模型 本文基于Hugging Face:The Annotated Diffusion Model一文翻译迁移而来,同时参考了由浅入深了解Diffusion Model一文。 本教程在Jupyter Notebook上成功运行。如您下载本文档为Python文件&#xff0c…...

LeetCode 744, 49, 207

目录 744. 寻找比目标字母大的最小字母题目链接标签思路代码 49. 字母异位词分组题目链接标签思路代码 207. 课程表题目链接标签思路代码 744. 寻找比目标字母大的最小字母 题目链接 744. 寻找比目标字母大的最小字母 标签 数组 二分查找 思路 本题比 基础二分查找 难的一…...

【AI资讯】可以媲美GPT-SoVITS的低显存开源文本转语音模型Fish Speech

Fish Speech是一款由fishaudio开发的全新文本转语音工具,支持中英日三种语言,语音处理接近人类水平,使用Flash-Attn算法处理大规模数据,提供高效、准确、稳定的TTS体验。 Fish Audio...

微服务数据流的协同:Eureka与Spring Cloud Data Flow集成指南

微服务数据流的协同:Eureka与Spring Cloud Data Flow集成指南 在构建基于Spring Cloud的微服务架构时,服务发现和数据流处理是两个关键的组成部分。Eureka作为服务发现工具,而Spring Cloud Data Flow提供了数据流处理的能力。本文将详细介绍…...

java生成json格式文件(包含缩进等格式)

生成json文件的同时保留原json格式&#xff0c;拥有良好的格式&#xff08;如缩进等&#xff09;&#xff0c;提供友善阅读支持。 pom.xml依赖增加&#xff1a; <dependency><groupId>com.google.code.gson</groupId><artifactId>gson</artifactI…...

Python面试题:如何在 Python 中读取和写入 JSON 文件?

在 Python 中读取和写入 JSON 文件可以使用 json 模块。以下是具体的示例&#xff0c;展示了如何读取和写入 JSON 文件。 读取 JSON 文件 要读取 JSON 文件&#xff0c;可以使用 json.load() 方法。下面是一个示例代码&#xff1a; import json# 假设有一个名为 data.json 的…...

FlutterWeb渲染模式及提速

背景 在使用Flutter Web开发的网站过程中&#xff0c;常常会遇到不同浏览器之间的兼容性问题。例如&#xff0c;在Google浏览器中动画和交互都非常流畅&#xff0c;但在360浏览器中却会出现卡顿现象&#xff1b;在Google浏览器中动态设置图标颜色正常显示&#xff0c;而在Safa…...

群体优化算法----化学反应优化算法介绍,解决蛋白质-配体对接问题示例

介绍 化学反应优化算法&#xff08;Chemical Reaction Optimization, CRO&#xff09;是一种新兴的基于自然现象的元启发式算法&#xff0c;受化学反应过程中分子碰撞和反应机制的启发而设计。CRO算法模拟了分子在化学反应过程中通过能量转换和分子间相互作用来寻找稳定结构的…...

Go语言如何入门,有哪些书推荐?

Go 语言之所以如此受欢迎&#xff0c;其编译器功不可没。Go 语言的发展也得益于其编译速度够快。 对开发者来说&#xff0c;更快的编译速度意味着更短的反馈周期。大型的 Go 应用程序总是能在几秒钟之 内完成编译。而当使用 go run编译和执行小型的 Go 应用程序时&#xff0c;其…...

【密码学】密码学体系

密码学体系是信息安全领域的基石&#xff0c;它主要分为两大类&#xff1a;对称密码体制和非对称密码体制。 一、对称密码体制&#xff08;Symmetric Cryptography&#xff09; 在对称密码体制中&#xff0c;加密和解密使用相同的密钥。这意味着发送方和接收方都必须事先拥有这…...

Bean的管理

1.主动获取Bean spring项目在需要时&#xff0c;会自动从IOC容器中获取需要的Bean 我们也可以自己主动的得到Bean对象 &#xff08;1&#xff09;获取bean对象&#xff0c;首先获取SpringIOC对象 private ApplicationContext applicationContext //IOC容器对象 (2 )方法…...

Unity 数据持久化【PlayerPrefs】

1、数据持久化 文章目录 1、数据持久化PlayerPrefs基本方法1、PlayerPrefs概念2、存储相关3、读取相关4、删除数据思考 信息的存储和读取 PlayerPrefs存储位置1、PlayerPrefs存储的数据在哪个位置2、PlayerPrefs 数据唯一性思考 排行榜功能 2、Playerprefs实践1、必备知识点-反…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制&#xff0c;展现出显著的技术优势&#xff1a; 深层组织穿透能力&#xff1a;适用于活体组织深度成像 高分辨率观测性能&#xff1a;满足微观结构的精细研究需求 低光毒性特点&#xff1a;减少对样本的损伤…...

嵌入式常见 CPU 架构

架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集&#xff0c;单周期执行&#xff1b;低功耗、CIP 独立外设&#xff1b;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel&#xff08;原始…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...