当前位置: 首页 > news >正文

昇思25天打卡营-mindspore-ML- Day14-VisionTransformer图像分类

今天学习了Vision Transformer图像分类,这是一种基于Transformer模型的图像分类方法,它不依赖卷积操作,而是通过自注意力机制捕捉图像块之间的空间关系,从而实现图像分类。

基本原理

  1. 图像分块: 将原始图像划分为多个patch(图像块),并将二维patch转换为一维向量。
  2. 位置编码: 为了让模型理解patch的空间位置信息,引入位置编码,将位置信息融入到patch向量中。
  3. Transformer编码器: 模型的主体结构是基于Transformer的Encoder部分,包含多个Transformer块。每个Transformer块包含自注意力机制和前馈网络,用于捕捉patch之间的空间关系并进行特征提取。
  4. 分类器: 最后一个Transformer块的输出连接一个全连接层,用于分类。

与其他图像分类算法的区别和特色

  • 不依赖卷积操作: Vision Transformer不使用卷积操作,而是通过自注意力机制捕捉图像块之间的空间关系,这使得模型更加灵活,能够更好地捕捉图像的全局特征。
  • 可扩展性: Transformer模型具有良好的可扩展性,可以轻松扩展到更大的模型,从而提高模型的性能。

打个比方

Vision Transformer就像一位棋手,它不是通过记住棋盘上的每个棋子的位置,而是通过分析棋子之间的相互关系来下棋。同样,Vision Transformer不是通过分析图像中的每个像素,而是通过分析图像块之间的空间关系来进行图像分类。

本文档所用的数据库

本文档使用的是ImageNet数据集包含了超过1400万个图像,涵盖了大约22000个类别。ImageNet数据集由Stanford大学计算机视觉实验室创建,旨在推动图像识别技术的发展。)的子集,包含训练集、验证集和测试集。

之前的学习中,涉及到多种图像分类算法如ResNet50, ShuffleNet,它们之间的区别和特点,总结下来感觉是这样:

ResNet50, ShuffleNet, 和 Vision Transformer (ViT) 是三种常用的图像分类算法,它们各自拥有不同的原理和特色。

1. ResNet50:

  • 原理: ResNet50 是一种深度卷积神经网络,它使用残差学习来解决深度网络训练过程中的梯度消失问题。ResNet50 通过引入残差连接,将输入直接连接到后续层,从而使得梯度可以直接传播到前面的层,避免了梯度消失的问题。
  • 特色: ResNet50 具有很强的特征提取能力,能够捕捉图像中的复杂特征,并且具有良好的泛化能力。此外,ResNet50 还可以通过修改网络深度和宽度来调整模型复杂度,从而适应不同的任务需求。

2. ShuffleNet:

  • 原理: ShuffleNet 是一种轻量级卷积神经网络,它使用通道混洗和分组卷积来减少模型参数量和计算量,从而降低模型复杂度。ShuffleNet 通过将输入通道划分为多个组,并在组内进行卷积操作,从而减少参数量和计算量。
  • 特色: ShuffleNet 具有轻量级的特性,能够在移动设备上高效运行。此外,ShuffleNet 还可以通过调整分组数来调整模型复杂度,从而适应不同的计算资源限制。

3. Vision Transformer (ViT):

  • 原理: ViT 是一种基于Transformer的图像分类算法,它将图像分割成多个patch,并使用Transformer编码器来捕捉patch之间的空间关系。ViT 使用自注意力机制来学习图像的全局特征,从而实现图像分类。
  • 特色: ViT 不依赖卷积操作,而是通过自注意力机制捕捉图像块之间的空间关系,这使得模型更加灵活,能够更好地捕捉图像的全局特征。此外,ViT 具有很强的可扩展性,可以轻松扩展到更大的模型,从而提高模型的性能。

讨论

例子: 假设我们有一个包含猫和狗的图像数据集,我们需要使用图像分类算法来区分猫和狗。

  • ResNet50: ResNet50 可以有效地提取图像中的特征,例如猫的耳朵、狗的鼻子等,从而区分猫和狗。
  • ShuffleNet: ShuffleNet 可以在移动设备上高效运行,因此我们可以使用ShuffleNet在手机上进行猫狗分类。
  • ViT: ViT 可以更好地捕捉图像的全局特征,例如猫和狗的整体形状和姿态,从而更准确地区分猫和狗。

代码实现过程

  1. 环境准备: 安装MindSpore库,并下载ImageNet数据集子集。
  2. 数据读取: 使用ImageFolderDataset读取数据集,并进行数据增强。
  3. 模型构建: 构建ViT模型,包括patch嵌入层、位置编码层、Transformer编码器层和分类器层。
  4. 模型训练: 设置损失函数、优化器和回调函数,并进行模型训练。
  5. 模型验证: 使用ImageFolderDataset读取验证集数据,并进行模型验证,评估模型的性能。
  6. 模型推理: 使用ImageFolderDataset读取测试集数据,并进行模型推理,预测图像类别。

代码说明

  • PatchEmbedding: 将图像块转换为向量,并添加class embedding和位置编码。
  • TransformerEncoder: 包含多个Transformer块,每个Transformer块包含自注意力机制和前馈网络。
  • CrossEntropySmooth: 损失函数,用于计算预测结果和真实标签之间的差距。
  • Model: 用于编译模型,设置损失函数、优化器和评价指标。
  • ImageFolderDataset: 用于读取数据集,并进行数据增强。
  • show_result: 将预测结果标记在图片上。

具体代码和训练过程如下:

【腾讯文档】VisionTransformer图像分类
 

相关文章:

昇思25天打卡营-mindspore-ML- Day14-VisionTransformer图像分类

今天学习了Vision Transformer图像分类,这是一种基于Transformer模型的图像分类方法,它不依赖卷积操作,而是通过自注意力机制捕捉图像块之间的空间关系,从而实现图像分类。 基本原理: 图像分块: 将原始图像划分为多个…...

微信环境内H5网页,用开放标签wx-open-launch-app打开app

一、微信公众号后台配置安全域名 准备一个认证通过的公众号,打开公众号后台 1、设置与开发 2、公众号设置 3、功能设置 4、配置js接口安全域名 二、微信开放平台,将公众号与APP关联 打开微信开放平台后台 1、管理中心 2、公众号 3、选择一个需要操作…...

【c++基础】高精度数不进位加法

高精度数不进位加法 谈及数字即可想到运算,那么高精度数怎么运算呢?今天来系统介绍一下高精度数的加法。 思考一下加法运算,我们可以简单将加法运算这样区分: 有无进位。位数是否相同。 这篇文章我们就来讨论一下无进位的高精度…...

UniApp 中 Web/H5 正确使用反向代理解决跨域问题

因为 Vue3 的构建工具是 Vite,所以配置 vue.config.js 是没用的(Vue2 因为使用 webpack 所以才用这个文件) 这里提供一份 vue.config.js 的示例: module.exports {devServer: {proxy: {/api: {target: http://example.com,chan…...

Redis Stream:实时数据流的处理与存储

Redis Stream:实时数据流的处理与存储 引言 在当今数据驱动的世界中,实时数据处理和存储成为了许多应用的核心需求。Redis Stream作为一种新兴的数据结构,为Redis带来了强大的流处理能力。本文将深入探讨Redis Stream的特点、使用场景以及如何高效地利用它来处理实时数据流…...

【论文阅读】-- Visual Traffic Jam Analysis Based on Trajectory Data

基于轨迹数据的可视化交通拥堵分析 摘要1 引言2 相关工作2.1 交通事件检测2.2 交通可视化2.3 传播图可视化 3 概述3.1 设计要求3.2 输入数据说明3.3 交通拥堵数据模型3.4 工作流程 4 预处理4.1 路网处理4.2 GPS数据清理4.3 地图匹配4.4 道路速度计算4.5 交通拥堵检测4.6 传播图…...

修改编译依赖openssl的libcrypto.so

由于centos7默认使用openssl1.0.2k的libcrypto.so.10共享库。即使openssl升级为3.0.11后,编译使用ldd命令查看共享库依旧会引用libcrypto.so.10。 现希望引用libcrypto.so.3,需要在生成动态链接库的CMakeLists.txt中增加如下配置,明确指定ope…...

����: �Ҳ������޷��������� javafx.fxml ԭ��: java.lang.ClassNotFoundException解决方法

如果你出现了这个问题,恭喜你,你应该会花很多时间去找解决方法。别问我怎么知道的... 解决方法: 出现乱码的原因:配置vm时 这些配置看似由有空格,换行,实则没有。所以解决办法就是,重新配置你…...

【C++】———— 继承

作者主页: 作者主页 本篇博客专栏:C 创作时间 :2024年7月5日 一、什么是继承? 继承的概念 定义: 继承机制就是面向对象设计中使代码可以复用的重要手段,它允许在程序员保持原有类特性的基础上进行扩展…...

Python人生重开器

Life reopens stimulator """ 作者:->yjy 所有的惊艳都曾历经平庸 """ import random import sys import time# 打印初始界面 print(------------------------------) print(| |) print(| >>人生重…...

python 高级技巧 0708

python 33个高级用法技巧 使用装饰器计时函数 装饰器是一种允许在一个函数或方法调用前后运行额外代码的结构。 import timedef timer(func):"""装饰器函数,用于计算函数执行时间并打印。参数:func (function): 被装饰的函数返回:function: 包装后…...

HOW - React Router v6.x Feature 实践(react-router-dom)

目录 基本特性ranked routes matchingactive linksNavLinkuseMatch relative links1. 相对路径的使用2. 嵌套路由的增强行为3. 优势和注意事项4. . 和 ..5. 总结 data loadingloading or changing data and redirectpending navigation uiskeleton ui with suspensedata mutati…...

`padding`、`border`、`width`、`height` 和 `display` 这些 CSS 属性的作用

盒模型中的属性 padding(内边距) padding 用于控制元素内容与边框之间的空间,可以为元素的每个边(上、右、下、左)分别设置内边距。内边距的单位可以是像素(px)、百分比(%&#xf…...

C++ QT 全局信号的实现

每次做全局信号都需要重新建立文件&#xff0c;太麻烦了&#xff0c;记录一下&#xff0c;以后直接复制。 头文件 globalSignalEmitter.h #pragma once //#ifndef GLOBALSIGNALEITTER_H //#define GLOBALSIGNALEITTER_H#include <QObject>class GlobalSignalEmitter : …...

十款绚丽的前端 CSS 菜单导航动画

CSS汉堡菜单是一种非常流行的PC端和移动端web菜单风格&#xff0c;特别是移动端&#xff0c;这种风格的菜单应用更为广泛。这款菜单便非常适合在手机App上使用&#xff0c;它的特点是当顶部菜单弹出时&#xff0c;页面内容将会配合菜单出现适当的联动&#xff0c;让整个页面变得…...

debain系统使用日志

账号 vboxuser changeme ssh远程登录vbox虚拟机 https://www.cnblogs.com/BuzzWeek/p/17557981.html Terminal su - root changeme sudo apt-get update sudo apt-get -y install openssh-server #启动sshd systemctl status sshd 设置允许ssh登录vbox虚拟机 参考&#xf…...

【Word】快速对齐目录

目录标题 1. 全选要操作的内容 → 右键 → 段落2. 选则制表位3. 配置制表符4. Tab键即可 1. 全选要操作的内容 → 右键 → 段落 2. 选则制表位 3. 配置制表符 4. Tab键即可...

MATLAB基础应用精讲-【数模应用】 岭回归(Ridge)(附MATLAB、python和R语言代码实现)

目录 前言 算法原理 数学模型 Ridge 回归的估计量 Ridge 回归与标准多元线性回归的比较 3. Ridge 参数的选择 算法步骤 SPSSPRO 1、作用 2、输入输出描述 3、案例示例 4、案例数据 5、案例操作 6、输出结果分析 7、注意事项 8、模型理论 SPSSAU 岭回归分析案…...

推荐6个开源博客项目源码,你会选哪个呢

搭建个人博客系统时&#xff0c;可以选择多种开源平台&#xff0c;以下是一些受欢迎的开源博客系统及其特点&#xff1a; 1. Plumemo Plumemo 是一个轻量、易用、前后端分离的博客系统&#xff0c;为了解除开发人员对后端的束缚&#xff0c;真正做到的一个面向接口开发的博客…...

OCR text detect

主干网络 VoVNet&#xff1a;实时目标检测的新backbone网络_vovnet pytorch-CSDN博客 DenseNet&#xff1a; arxiv.org/pdf/1608.06993 密集连接&#xff1a; DenseNet 的核心思想是将网络中的每一层与其前面的所有层直接连接。对于一个 L 层的网络&#xff0c;DenseNet 具有…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

鸿蒙(HarmonyOS5)实现跳一跳小游戏

下面我将介绍如何使用鸿蒙的ArkUI框架&#xff0c;实现一个简单的跳一跳小游戏。 1. 项目结构 src/main/ets/ ├── MainAbility │ ├── pages │ │ ├── Index.ets // 主页面 │ │ └── GamePage.ets // 游戏页面 │ └── model │ …...

【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?

FTP&#xff08;File Transfer Protocol&#xff09;本身是一个基于 TCP 的协议&#xff0c;理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况&#xff0c;主要原因包括&#xff1a; ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...