当前位置: 首页 > news >正文

机器学习中的数学原理——模型评估与交叉验证

惭愧惭愧!机器学习中的数学原理这个专栏已经很久没有更新了!前段时间一直在学习深度学习,paddlepaddle,刷题专栏跟新了,这个专栏就被打入冷宫了。这个专栏名为白话机器学习中数学学习笔记,主要是用来分享一下我在 机器学习中的学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢迎私信或者评论区留言!这一篇就更新一下《 白话机器学习中的数学——模型评估与交叉验证》!

文章目录

  • 一、什么是模型评估
  • 二、交叉验证
    • 2.1回归问题的交叉验证
    • 2.2分类问题的验证

一、什么是模型评估

简单的讲,模型评估就是评估训练好的模型的好坏。

在进行回归和分类时,为了进行预测,我们定义了函数 fθ(x),然后根据训练数据求出了函数的参数 θ。也就是对目标函数进行微分,然后求出参数更新表达式的操作,当时我们求出参数更新表达式之后就结束了。
但是,其实我们真正想要的是通过预测函数得到预测值。以回归的那个例子来说,就是关于投入的广告费能带来多少点击量的预测值。所以我们希望 fθ(x)对未知数据 x 输出的预测值尽可能正确。那我们如何测量预测函数 fθ(x)的正确性,也就是精度呢?对于一个变量的问题,我可以用图直观的表示出来:


在这里插入图片描述

像多重回归这样的问题,变量增加后就不能在图上展示了,而且特意去画图也很麻烦。所以我们需要能够定量地表示机器学习模型的精度。 接下来我们就要考虑评估模型的方法。

二、交叉验证

验证是指的在机器学习模型训练时对模型好坏程度的衡量。交叉验证就是一种常用的模型选择方法,使用部分数据集进行验证模型的有效性。

2.1回归问题的交叉验证

把获取的全部训练数据分成两份:一份用于测试,一份用于训练。然后用前者来评估模型。也就是说假如有 10 个训练数据,那么实际上会按照 5 个测试数据、5 个训练数据来分配它们,但是比起 5 : 5,大多数情况会采用 3 : 7 或者 2 : 8 这种训练数据更多的比例。
我们接下来用3 个用于测试、7 个用于训练。也就是说,关于点击量预测的回归问题,我们现在有 10 个数据,其中测试数据和训练数据是这样分配的:


在这里插入图片描述

右侧的 3 个是测试数据、左侧的 7 个是训练数据。首先,我们来考虑使用左侧这 7 个数据来训练参数的情况。用一次函数

fθ(x)=θ0+θ1x∗f_{\boldsymbol{\theta}}(\boldsymbol{x})=\theta_0+\theta_1 x^*fθ(x)=θ0+θ1x表示即可。先从一次函数开始考虑比较好。先不去管测试数据,只看那7个训练数据。一次拟合函数大概如下:

在这里插入图片描述
再考虑二次函数:

在这里插入图片描述

如果 fθ(x)是二次函数,那它基本上就是这个形状。但是这个函数“只有对训练数据才是正确的”,对于测试集的预测效果很差。也就是说如果只看训练数据,那么二次函数比一次函数拟合得更好。

但是,如果将测试数据也考虑进来,那么二次函数就完全不行了。要把测试数据当作未知数据来考虑。即使模型相同,如果训练数据过少,这种现象也会发生。那么在训练结束之后,我们还得像这样检查一下测试数据是否也拟合,但是如果变量增加,就不能画图了。就算能画图,也会很麻烦。
对于回归的情况,只要在训练好的模型上计算测试数据的误差的平方,再取其平均值就可以了。假设测试数据有 n 个,那么可以这样计算。

1n∑i=1n(y(i)−fθ(x(i)))2\frac{1}{n} \sum_{i=1}^n\left(y^{(i)}-f_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)\right)^2n1i=1n(y(i)fθ(x(i)))2
对于预测点击量的回归问题来说,y(i) 就是点击量,而 x(i) 是广告费或广告版面的大小,这个值被称为均方误差或者 MSE,全称 Mean Square Error。这个误差越小,精度就越高,模型也就越好。

在这里插入图片描述
回归的目标函数也是误差函数,这与为了让误差函数的值变小而更新参数时所做的事情是一样的!

2.2分类问题的验证

与回归的时候一样,我们先考虑数据的分配。
在这里插入图片描述
数据的分配方法不要太极端其实会更好”这一点与回归的时候也是一样的。假设在逻辑回归的情况下,θTx 是简单的一次函数,那么只根据训练数据进行训练后,决策边界应该是这样的:
在这里插入图片描述
但是假如θTx 更加复杂,可能就会像这样紧贴着训练数据进行分类:
在这里插入图片描述
可以看到可以对训练数据完美地进行分类,却完全忽视了测试数据。对于分类有别的指标。由于回归是连续值,所以可以从误差入手,但是在分类中我们必须要考虑分类的类别是否正确。在回归中要考虑的是答案不完全一致时的误差,而分类中要考虑的是答案是否正确。
我们对图像是横向的还是纵向的进行了分类,我们是根据图像为横向的概率来分类的。关于分类是否成功就会有下面 4 种情况:

  • 图像是横向的,被正确分类了
  • 图像被分类为横向,但实际上不是横向的
  • 图像不是横向的,被正确分类了
  • 图像被分类为非横向,但实际上是横向的

把它整理到这样的表里:
在这里插入图片描述
设横向的情况为正、非横向的情况为负,那么一般来说,二分类的结果可以用这张表来表示:
在这里插入图片描述
分类结果为正的情况是 Positive、为负的情况是 Negative。分类成功为 True、分类失败为 False。我们可以使用表里的 4 个记号来计算分类的精度。精度的英文是 Accuracy,它的计算表达式是这样的:
在这里插入图片描述
它表示的是在整个数据集中,被正确分类的数据 TP 和 TN 所占的比例。假如 100 个数据中 80 个被正确地分类了,那么精度就是这样的:
在这里插入图片描述
用测试数据来计算这个值,值越高精度越高,也就意味着模型越好!

相关文章:

机器学习中的数学原理——模型评估与交叉验证

惭愧惭愧!机器学习中的数学原理这个专栏已经很久没有更新了!前段时间一直在学习深度学习,paddlepaddle,刷题专栏跟新了,这个专栏就被打入冷宫了。这个专栏名为白话机器学习中数学学习笔记,主要是用来分享一…...

JAVA开发(JSP的9大内置对象和4大作用域)

背景: 在springboot横行的javaweb开发中,现在的后端开发工程师基本不需要写前端JSP页面。但是作为web开发工程师,不懂JSP的原理和作用,几乎是不行的。 JSP技术介绍: JSP(全称Java Server Pages&#xff…...

(4)EKF失控保护

文章目录 前言 4.1 什么时候会触发? 4.2 当失控保护触发时,会发生什么?...

数论----质数的求解(C/C++)

CSDN的uu,你们好呀,今天我们要学习的内容是数论哦!这也是算法题中的一类题目吧。记好安全带,准备发车咯!🚀学习数论的意义📢算法导论说:“数论曾经被视为一种虽然优美但却没什么用处…...

【电赛MSP430系列】GPIO、LED、按键、时钟、中断、串口、定时器、PWM、ADC

文章目录MSP430一、GPIO二、点亮LED三、按键控制LED四、更改主时钟五、串口通信六、串口中断七、外部中断八、定时器九、定时器中断十、PWM十一、ADCMSP430 MSP430 是德州仪器(TI)一款性能卓越的超低功耗 16 位单片机,自问世以来&#xff0c…...

【Linux】进程理解与学习(Ⅱ)

环境:centos7.6,腾讯云服务器Linux文章都放在了专栏:【Linux】欢迎支持订阅🌹相关文章推荐:【Linux】冯.诺依曼体系结构与操作系统【Linux】进程理解与学习(Ⅰ)浅谈Linux下的shell--BASH前言章节…...

vscode 爽到起飞的快捷键

这里写目录标题1. 窗口操作2. 代码编辑3. 批量操作4. 错误处理1. 窗口操作 文件之间切换: CtrlTab 切出一个新的编辑器窗口(最多3个): Ctrl\ 切换左中右3个编辑器窗口的快捷键: Ctrl1 Ctrl2 Ctrl3 2. 代码编辑 代码格式化: ShiftAltF 向上或向下移动一行: Alt…...

vs +qt 打包.cpp和.h为DLL文件

文章目录一 编译成库1 创建一个Qt library 项目2,将已有的文件拷贝到项目目录下3 在项目中添加现有项4,拷贝头文件到需要暴露给外面使用的类的头文件中5 拷贝xxx_EXPORT的宏到需要被暴露的类的名前面6 然后点击编译 就完成了。得到的dll文件在debug里面二…...

echarts有滑块

vue下使用echarts折线图及其横坐标拖拽功能 drawLine() {let that this,lineDate [],dispatchCount [],finishCount [],newCount [];let param {// 参数};axios.post(url, param).then(function(response) {let rs response.data.data;if (rs ! undefined && rs…...

MATLAB绘制ROC曲线

ROC曲线(Receiver Operating Characteristic Curve) 1 简介 ROC曲线是用于评估二元分类模型(如Logistic回归)表现优劣的一种工具,其横轴表示假阳性率(false positive rate,FPR),即实际为负例但…...

ChatGPT前传

文章目录前言GPT概述GPT-1代GPT-1 学习目标和概念介绍GPT-1 训练数据集GPT-1 模型结构和应用细节GPT-1 效果性能和总结GPT-2代GPT-2 学习目标和概念介绍GPT-2 训练数据集GPT-2 模型结构和应用细节GPT-2 性能效果和总结GPT-3代GPT-3 学习目标和概念介绍GPT-3 训练数据集GPT-3 模…...

我的十年编程路 2020年篇

我出生在1990年,2020年到来的时候,我完成了一项成就:奔三。同时,也开启了新的征程:奔四。 2020年的春节是在广州的丈母娘家度过的,春节后大概是初五,或者是初六,我和媳妇就返回天津…...

力扣-SQL【入门】

https://leetcode.cn/study-plan/sql/?progressxhqm4sjh 目录选择595. 大的国家1757. 可回收且低脂的产品584. 寻找用户推荐人183. 从不订购的客户排序 & 修改1873. 计算特殊奖金627. 变更性别196. 删除重复的电子邮箱选择 595. 大的国家 # Write your MySQL query state…...

Vue中组件到底是什么

1.先说结论&#xff1a; Vue中组件本质是一个名为VueComponent的构造函数&#xff0c;且不是程序员定义的&#xff0c;是Vue.extend生成的。 2.我们使用组件时发生了什么&#xff1f; 比如定义了一个school,然后在页面上使用它 我们只需要写 < school/ > 或< school &…...

不同时间间隔数据对统计结果的影响

目录摘要1. 实测数据来源2. 数据分析方法3 结果分析3.1 波况分析摘要 采用不同的波浪观测方法所获得的波浪数据的时间间隔不一致&#xff0c;其数据的准确性须进行分析。基于大埕湾逐时周年波浪观测数据&#xff0c;截取不同时间间隔的波浪数据&#xff0c;采用统计和相关分析…...

hudi系列-数据写入方式及使用场景

hudi支持多种数据写入方式:insert、bulk_insert、upsert、boostrap,我们可以根据数据本身属性(append-only或upsert)来选择insert和upsert方式,同时也支持对历史数据的高效同步并嫁接到实时流程。 这里的使用技术组合为flink + hudi-0.11 upsert 这是hudi默认的写入方式,…...

C # FileStream文件流

本章讲述&#xff1a;FileStream类的基本功能&#xff0c;以及简单示例&#xff1b; 1、引用命名空间&#xff1a;using System.IO; 2、注意&#xff1a;使用IO操作文件时&#xff0c;要注意流关闭和释放问题&#xff01; 强力推荐&#xff1a;将创建文件流对象的过程写在usi…...

Go语言中的保留字和运算符详解

前言 &#x1f3e0;个人主页&#xff1a;我是沐风晓月 &#x1f9d1;个人简介&#xff1a;大家好&#xff0c;我是沐风晓月&#xff0c;双一流院校计算机专业&#xff0c;阿里云博客专家 &#x1f609;&#x1f609; &#x1f495; 座右铭&#xff1a; 先努力成长自己&#xff…...

Linux编译之(1)C语言基础

Linux编译之C语言基础 Author&#xff1a;Once Day Date&#xff1a;2023年3月11日 漫漫长路&#xff0c;才刚刚开始… 1.概述 在Linux下开发多源文件的C代码文件&#xff0c;是一定要了解Makefile的&#xff0c;虽然现在构建工具很多&#xff0c;但学习的一开始&#xff0…...

CPU平均负载高问题定位分析

一、Linux操作系统CPU平均负载 1.1什么是CPU平均负载 1.2 怎么查看平均负载数值 二、Linux操作系统CPU使用率和平均负载区别 CPU使用率和平均负载区别 三、阿里云Linux操作系统CPU压测环境准备 3.1 核心命令应用场景 3.2 模拟生产环境出现的多种问题环境准备 分析工具安…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

LangFlow技术架构分析

&#x1f527; LangFlow 的可视化技术栈 前端节点编辑器 底层框架&#xff1a;基于 &#xff08;一个现代化的 React 节点绘图库&#xff09; 功能&#xff1a; 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何&#xff0c;是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试&#xff0c;是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

Monorepo架构: Nx Cloud 扩展能力与缓存加速

借助 Nx Cloud 实现项目协同与加速构建 1 &#xff09; 缓存工作原理分析 在了解了本地缓存和远程缓存之后&#xff0c;我们来探究缓存是如何工作的。以计算文件的哈希串为例&#xff0c;若后续运行任务时文件哈希串未变&#xff0c;系统会直接使用对应的输出和制品文件。 2 …...

基于开源AI智能名片链动2 + 1模式S2B2C商城小程序的沉浸式体验营销研究

摘要&#xff1a;在消费市场竞争日益激烈的当下&#xff0c;传统体验营销方式存在诸多局限。本文聚焦开源AI智能名片链动2 1模式S2B2C商城小程序&#xff0c;探讨其在沉浸式体验营销中的应用。通过对比传统品鉴、工厂参观等初级体验方式&#xff0c;分析沉浸式体验的优势与价值…...

Mac flutter环境搭建

一、下载flutter sdk 制作 Android 应用 | Flutter 中文文档 - Flutter 中文开发者网站 - Flutter 1、查看mac电脑处理器选择sdk 2、解压 unzip ~/Downloads/flutter_macos_arm64_3.32.2-stable.zip \ -d ~/development/ 3、添加环境变量 命令行打开配置环境变量文件 ope…...