为什么KV Cache只需缓存K矩阵和V矩阵,无需缓存Q矩阵?
大家都知道大模型是通过语言序列预测下一个词的概率。假定{ x 1 x_1 x1, x 2 x_2 x2, x 3 x_3 x3,…, x n − 1 x_{n-1} xn−1}为已知序列,其中 x 1 x_1 x1, x 2 x_2 x2, x 3 x_3 x3,…, x n − 1 x_{n-1} xn−1均为维度是 d m o d e l d_{model} dmodel的向量, q n q_{n} qn、 k n k_{n} kn、 v n v_{n} vn同为向量。当输入 x n x_n xn时,需要预测 x n + 1 x_{n+1} xn+1的概率分布。
KV Cache干了什么?
Attention机制的目标是输入 x n x_n xn,输出 z n z_n zn。在具体实现过程中,输入 x n x_n xn,生成 q n q_n qn、 k n k_n kn和 v n v_n vn,并在实际计算中不再需要重复计算 k 1 k_1 k1, k 2 k_2 k2,…, k n − 1 k_{n-1} kn−1和 v 1 v_1 v1, v 2 v_2 v2,…, v n − 1 v_{n-1} vn−1,直接从缓存中取即可。
具体Attention机制计算流程如下图所示。

观察注意力矩阵最下面一行(放大图我放下面了)。新输入的 x n x_n xn通过矩阵 W q W_q Wq生成 q n q_n qn,其中 q n q_n qn与 k 1 k_1 k1, k 2 k_2 k2,…, k n k_n kn均有运算关系。所以可以通过缓存 k 1 k_1 k1, k 2 k_2 k2,…, k n − 1 k_{n-1} kn−1向量加速推理。这是K矩阵需要缓存的原因。

不过很意外的发现最右边一列 q 1 q_1 q1, q 2 q_2 q2,…, q n − 1 q_{n-1} qn−1与 k n k_{n} kn之间存在计算。
不是说好的只有KV缓存,没有Q矩阵缓存?如果推导成立,新输入 x n x_{n} xn是否会改变 x 1 x_1 x1, x 2 x_2 x2,…, x n − 1 x_{n-1} xn−1的注意力分布?
推导没有错,也没有Q矩阵缓存。因为在推理阶段,Attention机制有一个非常重要的细节:mask掩码
注意力矩阵在训练推理过程中,为了模拟真实推理场景,当前位置token是看不到下一位置的,且只能看到上一位置以及前面序列的信息,所以在训练推理的时候加了attention mask。具体实现如下图所示:

将上图灰色区域全部重置为-inf(负无穷大) ,这样方便softmax的时候置为0。当新输入 x n x_n xn,注意力的计算(见注意力矩阵最下面一行)与 q 1 q_1 q1, q 2 q_2 q2,…, q n − 1 q_{n-1} qn−1无关,因此无需缓存Q矩阵
另外,还有个V矩阵,参照图1就干了一件事。
z n = a 1 ∗ v 1 + a 2 ∗ v 2 + . . . + a n ∗ v n z_n = a1*v_1+a2*v_2+...+a_n*v_n zn=a1∗v1+a2∗v2+...+an∗vn
我可以提前缓存 v 1 v_1 v1, v 2 v_2 v2,…, v n − 1 v_{n-1} vn−1,计算的时候从缓存中取即可,这是V矩阵需要缓存的原因。
相关文章:
为什么KV Cache只需缓存K矩阵和V矩阵,无需缓存Q矩阵?
大家都知道大模型是通过语言序列预测下一个词的概率。假定{ x 1 x_1 x1, x 2 x_2 x2, x 3 x_3 x3,…, x n − 1 x_{n-1} xn−1}为已知序列,其中 x 1 x_1 x1, x 2 x_2 x2, x 3 x_3 x…...
VS code修改底部的行号的状态栏颜色
VSCode截图 相信很多小伙伴被底部的蓝色状态栏困扰很久了 处理的方式有两种: 1、隐藏状态栏 2、修改其背景颜色 第一种方法大伙都会,今天就使用第二种方法。 1、点击齿轮进入setting 2、我现在用的新版本,设置不是以前那种json格式展示&…...
【鸿蒙学习笔记】MVVM模式
官方文档:MVVM模式 [Q&A] 什么是MVVM ArkUI采取MVVM Model View ViewModel模式。 Model层:存储数据和相关逻辑的模型。View层:在ArkUI中通常是Component装饰组件渲染的UI。ViewModel层:在ArkUI中,ViewModel是…...
端、边、云三级算力网络
目录 端、边、云三级算力网络 NPU Arm架构 OpenStack kubernetes k3s轻量级Kubernetes kubernetes和docker区别 DCI(Data Center Interconnect) SD/WAN TF 端、边、云三级算力网络 算力网络从传统云网融合的角度出发,结合 边缘计算、网络云化以及智能控制的优势,通…...
java —— JSP 技术
一、JSP (一)前言 1、.jsp 与 .html 一样属于前端内容,创建在 WebContent 之下; 2、嵌套的 java 语句放置在<% %>里面; 3、嵌套 java 语句的三种语法: ① 脚本:<% java 代码 %>…...
【Python学习笔记】菜鸟教程Scrapy案例 + B站amazon案例视频
背景前摇(省流可以跳过这部分) 实习的时候厚脸皮请教了一位办公室负责做爬虫这块的老师,给我推荐了Scrapy框架。 我之前学过一些爬虫基础,但是用的是比较常见的BeautifulSoup和Request,于是得到Scrapy这个关键词后&am…...
Pycharm的终端(Terminal)中切换到当前项目所在的虚拟环境
1.在Pycharm最下端点击终端/Terminal, 2.点击终端窗口最上端最右边的∨, 3.点击Command Prompt,切换环境, 可以看到现在环境已经由默认的PS(Window PowerShell)切换为项目所使用的虚拟环境。 4.更近一步,如果想让Pycharm默认显示…...
Nginx 高效加速策略:动静分离与缓存详解
在现代Web开发中,网站性能是衡量用户体验的关键指标之一。Nginx,以其出色的性能和灵活性,成为众多网站架构中不可或缺的一部分。本文将深度解析如何利用Nginx实现动静分离与缓存,从而大幅提升网站加载速度和响应效率。 理解动静分…...
Unity3D 游戏摇杆的制作与实现详解
在Unity3D游戏开发中,摇杆是一种非常常见的输入方式,特别适用于移动设备的游戏控制。本文将详细介绍如何在Unity3D中制作和实现一个虚拟摇杆,包括技术详解和代码实现。 对惹,这里有一个游戏开发交流小组,大家可以点击…...
从nginx返回404来看http1.0和http1.1的区别
序言 什么样的人可以称之为有智慧的人呢?如果下一个定义,你会如何来定义? 所谓智慧,就是能区分自己能改变的部分,自己无法改变的部分,努力去做自己能改变的,而不要天天想着那些无法改变的东西&a…...
MySQL 代理层:ProxySQL
文章目录 说明安装部署1.1 yum 安装1.2 启停管理1.3 查询版本1.4 Admin 管理接口 入门体验功能介绍3.1 多层次配置系统 读写分离将实例接入到代理服务定义主机组之间的复制关系配置路由规则事务读的配置延迟阈值和请求转发 ProxySQL 核心表mysql_usersmysql_serversmysql_repli…...
异步主从复制
主从复制的概念 主从复制是一种在数据库系统中常用的数据备份和读取扩展技术,通过将一个数据库服务器(主服务器)上的数据变更自动同步到一个或多个数据库服务器(从服务器)上,以此来实现数据的冗余备份、读…...
论文解析——Full Stack Optimization of Transformer Inference: a Survey
作者及发刊详情 摘要 正文 主要工作贡献 这篇文章的贡献主要有两部分: 分析Transformer的特征,调查高效transformer推理的方法通过应用方法学展现一个DNN加速器生成器Gemmini的case研究 1)分析和解析Transformer架构的运行时特性和瓶颈…...
selenium处理cookie问题实战
1. cookie获取不完整 需要进入的资损平台(web)首页,才会出现有效的ctoken等信息 1.1. 原因说明 未进入指定页面而获取的 cookie 与进入页面后获取的 cookie 可能会有一些差异,这取决于网站的具体实现和 cookie 的设置方式。 通常情况下,一些…...
(十五)GLM库对矩阵操作
GLM简单使用 glm是一个开源的对矩阵运算的库,下载地址: https://github.com/g-truc/glm/releases 直接包含其头文件即可使用: #include <glad/glad.h>//glad必须在glfw头文件之前包含 #include <GLFW/glfw3.h> #include <io…...
android中activity与fragment之间的各种跳转
我们以音乐播放、视频播放、用户注册与登录为例【Musicfragment(音乐列表页)、Videofragment(视频列表页)、MusicAvtivity(音乐详情页)、VideoFragment(视频详情页)、LoginActivity&…...
动态规划算法-以中学排课管理系统为例
1.动态规划算法介绍 1.算法思路 动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若…...
本安防爆手机:危险环境下的安全通信解决方案
在石油化工、煤矿、天然气等危险环境中,通信安全是保障工作人员生命安全和生产顺利进行的关键。防爆智能手机作为专为这些环境设计的通信工具,提供了全方位的安全通信解决方案。 防爆设计与材料: 防爆智能手机采用特殊的防爆结构和材料&…...
算法学习笔记(8)-动态规划基础篇
目录 基础内容: 动态规划: 动态规划理解的问题引入: 解析:(暴力回溯) 代码示例: 暴力搜索: Dfs代码示例:(搜索) 暴力递归产生的递归树&…...
数据库常见问题(持续更新)
数据库常见问题(持续更新) 1、数据库范式? 1NF:不可分割2NF:没有非主属性对候选码存在部分依赖3NF:没有非主属性传递依赖候选码BCNF:消除了主属性对对候选码的传递依赖或部分依赖 2、InnoDB事务的实现? …...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
