当前位置: 首页 > news >正文

AdaBoost集成学习算法理论解读以及公式为什么这么设计?

本文致力于阐述AdaBoost基本步骤涉及的每一个公式和公式为什么这么设计。
AdaBoost集成学习算法基本上遵从Boosting集成学习思想,通过不断迭代更新训练样本集的样本权重分布获得一组性能互补的弱学习器,然后通过加权投票等方式将这些弱学习器集成起来得到性能较优的集成模型。
image.png
图1:Boosting集成算法思想。
下面以二分类任务(标签不是为-1,就是为+1)为例介绍该算法的具体过程。值得注意的是,下面的公式推导是以二分类任务下得出来,所以公式(比如样本权重更新公式)才会显得比较整洁,但如果换成其他任务,如多分类,那么公式会复杂很多。
对于训练样本集 D = ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x n , y n ) D={\left(x_1,y_1\right),\left(x_2,y_2\right),\ldots,(x_n,y_n)} D=(x1,y1),(x2,y2),,(xn,yn),其中标签 y i ∈ { − 1 , + 1 } y_i\in\left\{-1,+1\right\} yi{1,+1},由AdaBoost集成学习算法构造集成模型的基本步骤如下:
(1)令 i = 1 i=1 i=1并设定弱学习器的数目m。对应第一次迭代,使用均匀分布初始化训练样本集的权重分布,令 n n n维向量 w i \mathbf{w}^i wi表示第 i i i次需更新的样本权重,则有:
w 1 = ( w 11 , w 12 , … , w 1 n ) T = ( 1 n , 1 n , … , 1 n ) T \mathbf{w}^1=\left(w_{11},w_{12},\ldots,w_{1n}\right)^T=\left(\frac{1}{n},\frac{1}{n},\ldots,\frac{1}{n}\right)^T w1=(w11,w12,,w1n)T=(n1,n1,,n1)T
(2)使用权重分布为 w i \mathbf{w}^i wi,此时 i = 1 i=1 i=1的训练样本集 D i D_i Di学习得到第 i i i个弱学习器 L i L_i Li
(3)计算 L i L_i Li在训练样本集 D i D_i Di上的分类错误率 e i e_i ei
e i = ∑ k = 1 n w i k I ( L i ( X k ) ≠ y k ) e_i=\sum_{k=1}^{n}{w_{ik}I \left(L_i\left(X_k\right)\neq y_k\right) } ei=k=1nwikI(Li(Xk)=yk)
(4)确定弱学习器 L i L_i Li的组合权重 α i \alpha_i αi( α i \alpha_i αi在最后得到最终的集成模型上用到)。由于弱学习器 L i L_i Li的权重取值应与其分类性能相关,对于分类错误率 e i e_i ei越小的 L i L_i Li,则其权重 α i \alpha_i αi应该越大,故有:
α i = 1 2 ln 1 − e i e i = 1 2 ln ( 1 e i − 1 ) \alpha_i=\frac{1}{2}\text{ln}\frac{1-e_i}{e_i}=\frac{1}{2}\text{ln}(\frac{1}{e_i}-1) αi=21lnei1ei=21ln(ei11)
可能会有人会为,为什么要这么设计 α i \alpha_i αi?我在下面给出了解释。
(5)(重点)依据弱学习器 L i L_i Li对训练样本集 D i D_i Di的分类错误率 e i e_i ei更新样本权重,样本权重更新公式为:
w i + 1 , j = w i j exp ⁡ ( − α i y k L i ( x k ) ) Z i w_{i+1,j}=\frac{w_{ij}\exp(-\alpha_iy_kL_i(x_k))}{Z_i} wi+1,j=Ziwijexp(αiykLi(xk))
其中:
Z i = ∑ k = 1 n w i j exp ⁡ ( − α i y k L i ( X k ) ) Z_i=\sum_{k=1}^{n}{w_{ij}\exp(-\alpha_iy_kL_i(X_k))} Zi=k=1nwijexp(αiykLi(Xk))
为归一化因子,保证更新后权重向量为概率分布;
对权重更新公式的解释
回顾开头,这是一个二分类任务,所以若样本 ( x k , y k ) (x_k,y_k) (xk,yk)分类正确,则要不 y k = L i ( x k ) = 1 y_k=L_i(x_k)=1 yk=Li(xk)=1,要不 y k = L i ( x k ) = − 1 y_k=L_i(x_k)=-1 yk=Li(xk)=1,因此有 y k ∗ L i ( x k ) = 1 y_k*L_i(x_k)=1 ykLi(xk)=1**。**若样本 ( x k , y k ) (x_k,y_k) (xk,yk)分类错误,则要不 y k = − 1 , L i ( x k ) = 1 y_k=-1,L_i(x_k)=1 yk=1,Li(xk)=1,要不 y k = 1 , L i ( x k ) = − 1 y_k=1,L_i(x_k)=-1 yk=1,Li(xk)=1,因此有 y k ∗ L i ( x k ) = − 1 y_k*L_i(x_k)=-1 ykLi(xk)=1
因此公式
w i + 1 , j = w i j exp ⁡ ( − α i y k L i ( x k ) ) Z i w_{i+1,j}=\frac{w_{ij}\exp(-\alpha_iy_kL_i(x_k))}{Z_i} wi+1,j=Ziwijexp(αiykLi(xk))
可以改写
w i + 1 , j = { w i j Z i exp ⁡ ( − α i ) , y k = L i ( x k ) w i j Z i exp ⁡ ( α i ) , y k ≠ L i ( x k ) w_{i+1,j}=\begin{cases} \frac{w_{ij}}{Z_i}\exp(-\alpha_i),y_k=L_i(x_k) \\\frac{w_{ij}}{Z_i}\exp(\alpha_i),y_k\ne L_i(x_k) \end{cases} wi+1,j={Ziwijexp(αi),yk=Li(xk)Ziwijexp(αi),yk=Li(xk)
这样,对于错误的样本会被放大 1 − e i e i \frac{1-e_i}{e_i} ei1ei倍,以便在后续弱学习器构造过程得到应有的重视。
为什么是 1 − e i e i \frac{1-e_i}{e_i} ei1ei倍?
w i + 1 , j , y k ≠ L i ( x k ) w i + 1 , j , y k = L i ( x k ) = w i j Z i exp ⁡ ( α i ) w i j Z i exp ⁡ ( − α i ) = exp ⁡ ( α i ) exp ⁡ ( − α i ) = e 2 ∗ α i = e 2 ∗ 1 2 ln 1 − e i e i = e ln 1 − e i e i = 1 − e i e i \frac{w_{i+1,j},y_k\ne L_i(x_k)}{w_{i+1,j},y_k=L_i(x_k)}=\frac{\frac{w_{ij}}{Z_i}\exp(\alpha_i)}{\frac{w_{ij}}{Z_i}\exp(-\alpha_i)} =\frac{\exp(\alpha_i)}{\exp(-\alpha_i)}=e^{2*\alpha_i}=e^{2*\frac{1}{2}\text{ln}\frac{1-e_i}{e_i}}=e^{\text{ln}\frac{1-e_i}{e_i}}=\frac{1-e_i}{e_i} wi+1,j,yk=Li(xk)wi+1,j,yk=Li(xk)=Ziwijexp(αi)Ziwijexp(αi)=exp(αi)exp(αi)=e2αi=e221lnei1ei=elnei1ei=ei1ei
另外 Z i Z_i Zi的作用是归一化,使得 ∑ j = 1 n w i + 1 , j = 1 \sum_{j=1}^{n}{w_{i+1,j}}=1 j=1nwi+1,j=1
(6)若 i < m i<m i<m,则令 i = i + 1 i=i+1 i=i+1并返回步骤(2),否则执行步骤(7);
(7)对于 m m m个弱分类器 L 1 , L 2 , … , L m L_1{,L}_2,\ldots,L_m L1,L2,,Lm,分别将每个 L i L_i Li按权重 α i \alpha_i αi进行组合:
L = sign ( ∑ i = 1 m α i L i ( X ) ) L=\text{sign}(\sum_{i=1}^{m}{\alpha_iL_i(X)}) L=sign(i=1mαiLi(X))
得到并输出所求集成模型 L L L,算法结束。

参考资料:《机器学习及其应用》汪荣贵等编著

相关文章:

AdaBoost集成学习算法理论解读以及公式为什么这么设计?

本文致力于阐述AdaBoost基本步骤涉及的每一个公式和公式为什么这么设计。 AdaBoost集成学习算法基本上遵从Boosting集成学习思想&#xff0c;通过不断迭代更新训练样本集的样本权重分布获得一组性能互补的弱学习器&#xff0c;然后通过加权投票等方式将这些弱学习器集成起来得到…...

uniapp内置组件uni.navigateTo跳转后页面空白问题解决

文章目录 导文空白问题 导文 在h5上跳转正常 但是在小程序里面跳转有问题 无任何报错 页面跳转地址显示正确&#xff0c;但页面内容为空 空白问题 控制台&#xff1a; 问题解决&#xff1a; 方法1&#xff1a; 可能是没有注册的问题&#xff0c;把没注册的页面 注册一下。 方…...

使用树莓派进行python开发,控制电机的参考资料

网站连接&#xff1a;https://www.cnblogs.com/kevenduan?page1 1、简洁的过程步骤&#xff0c; 2、有代码示例&#xff0c; 3、有注意事项&#xff0c;...

protobuf的使用

protobuf&#xff1a;是一种数据格式&#xff0c;独立于平台&#xff0c;独立于语言&#xff0c;是一种二进制格式&#xff0c;可以存储更加复杂的数据结构&#xff0c;比如图&#xff0c;树&#xff0c;结构体&#xff0c;类 作用&#xff1a; 1.持久化&#xff1a;把数据存…...

笔记15:while语句编程练习

练习一&#xff1a; 编写程序&#xff0c;求 2^24^26^2...n^2? -直到累加和大于或等于 10000 为止&#xff0c;输出累加和 -输出累加式中的项数&#xff0c;以及最大的数 n #include<stdio.h> int main() {int sum 0;int i 1;int n 0;while(sum < 10000)//将sum…...

打开excel时弹出stdole32.tlb

问题描述 打开excel时弹出stdole32.tlb 如下图&#xff1a; 解决方法 打开 Microsoft Excel 并收到关于 stdole32.tlb 的错误提示时&#xff0c;通常意味着与 Excel 相关的某个组件或类型库可能已损坏或不兼容。 stdole32.tlb 是一个用于存储自动化对象定义的类型库&#x…...

349. 两个数组的交集

哈喽&#xff01;大家好&#xff0c;我是奇哥&#xff0c;一位专门给面试官添堵的职业面试员 文章持续更新&#xff0c;可以微信搜索【小奇JAVA面试】第一时间阅读&#xff0c;回复【资料】更有我为大家准备的福利哟&#xff01; 文章目录 一、题目二、答案三、总结 一、题目 …...

重庆交通大学数学与统计学院携手泰迪智能科技共建的“智能工作室”

2024年7月4日&#xff0c;重庆交通大学数学与统计学院与广东泰迪智能科技股份有限公司携手共建的“智能工作室”授牌仪式在南岸校区阳光会议室举行。此举标志着数统学院与广东泰迪公司校企合作新篇章的开启&#xff0c;也预示着学院在智能科技教育领域的深入探索和实践。 广东…...

Pandas在生物信息学中的应用详解

Pandas在生物信息学中的应用详解 引言 生物信息学作为一门将计算机科学和生物学相结合的跨学科领域&#xff0c;正随着高通量实验技术的飞速发展而日益重要。Pandas&#xff0c;作为Python中一个强大的数据处理库&#xff0c;为生物信息学研究提供了便捷高效的数据处理和分析…...

ByteMD富文本编辑器的vue3配置

Git地址&#xff1a;GitHub - bytedance/bytemd: ByteMD v1 repository 控制面板输入 npm install bytemd/vue-next 下载成功后在src/main.ts中引用 import "bytemd/dist/index.css";引入后保存&#xff0c;下面是一些插件&#xff0c;比如说我用到gmf和hightLight&…...

基于antdesign封装一个react的上传组件

项目中遇到了一个上传的需求&#xff0c;看了一下已有的代码很粗糙&#xff0c;而且是直接引用andt的组件&#xff0c;体验不太好&#xff0c;自己使用FormData对象封装了一个上传组件&#xff0c;仅供参考。 代码如下&#xff1a; /*** FileUploadModal* description - 文件选…...

ARM裸机:一步步点亮LED(汇编)

硬件工作原理及原理图查阅 LED物理特性介绍 LED本身有2个接线点&#xff0c;一个是LED的正极&#xff0c;一个是LED的负极。LED这个硬件的功能就是点亮或者不亮&#xff0c;物理上想要点亮一颗LED只需要给他的正负极上加正电压即可&#xff0c;要熄灭一颗LED只需要去掉电压即可…...

【单链表】05 有一个带头结点的单链表L,设计一个算法使其元素递增有序。

&#x1f57a;作者&#xff1a; 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux算法题上机准备 &#x1f618;欢迎 ❤️关注 &#x1f44d;点赞 &#x1f64c;收藏 ✍️留言 题目 有一个带头结点的单链表L,设计一个算法使其元素递增有序。 算法思路 解决办法有很多&…...

C语言入门基础题:奇偶 ASCII 值判断(C语言版)和ASCII码表,什么是ASCII码,它的特点和应用?

1.题目描述&#xff1a; 任意输入一个字符&#xff0c;判断其 ASCII 是否是奇数&#xff0c;若是&#xff0c;输出 YES &#xff0c;否则&#xff0c;输出 NO例如&#xff0c;字符 A 的 ASCI 值是 65 &#xff0c;则输出 YES &#xff0c;若输入字符 B(ASCII 值是 66)&#xff…...

Numpy的广播机制(用于自动处理不同形状的数组)

NumPy 广播是一种强大的机制&#xff0c;允许 NumPy 在执行元素级运算时自动处理不同形状的数组。广播的规则使得无需显式地创建匹配形状的数组&#xff0c;直接进行运算&#xff0c;大大简化了代码并提高了效率。 基本概念 广播的基本思想是让较小的数组在需要的维度上进行扩…...

计算机图形学入门24:材质与外观

1.前言 想要得到一个漂亮准确的场景渲染效果&#xff0c;不只需要物理正确的全局照明算法&#xff0c;也要了解现实中各种物体的表面外观和在图形学中的模拟方式。而物体的外观和材质其实就是同一个意思&#xff0c;不同的材质在光照下就会表现出不同的外观&#xff0c;所以外观…...

FTP、http 、tcp

HTTP VS FTP HTTP &#xff1a;HyperText Transfer Protocol 超文本传输协议&#xff0c;是基于TCP协议 FTP&#xff1a; File Transfer Protocol 文件传输协议&#xff0c; 基于TCP协议&#xff0c; 基于UDP协议的FTP 叫做 TFTP HTTP 协议 通过一个SOCKET连接传输依次会话数…...

【虚幻引擎】UE4初学者系列教程开发进阶实战篇——生存游戏案例

一、课程体系 1 学前必读 2 Character类相关基础 -人物移动控制 -动画蓝图 3 常见游戏机制基础 -碰撞器、触发器 -物体使用接口 -视角切换 4其他相关设计 -背包系统 -锻造系统 -物体破碎效果 -简易种植系统 -互动物体动画 5课程结语 二、UI部分 思维导图部分 实操部分 …...

认识并理解webSocket

今天逛牛客&#xff0c;看到有大佬分享说前端面试的时候遇到了关于webSocket的问题&#xff0c;一看自己都没见过这个知识点&#xff0c;赶紧学习一下&#xff0c;在此记录&#xff01; WebSocket 是一种网络通信协议&#xff0c;提供了全双工通信渠道&#xff0c;即客户端和服…...

Scissor算法-从含有表型的bulkRNA数据中提取信息进而鉴别单细胞亚群

在做基础实验的时候&#xff0c;研究者都希望能够改变各种条件来进行对比分析&#xff0c;从而探索自己所感兴趣的方向。 在做数据分析的时候也是一样的&#xff0c;我们希望有一个数据集能够附加了很多临床信息/表型&#xff0c;然后二次分析者们就可以进一步挖掘。 然而现实…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...