当前位置: 首页 > news >正文

AdaBoost集成学习算法理论解读以及公式为什么这么设计?

本文致力于阐述AdaBoost基本步骤涉及的每一个公式和公式为什么这么设计。
AdaBoost集成学习算法基本上遵从Boosting集成学习思想,通过不断迭代更新训练样本集的样本权重分布获得一组性能互补的弱学习器,然后通过加权投票等方式将这些弱学习器集成起来得到性能较优的集成模型。
image.png
图1:Boosting集成算法思想。
下面以二分类任务(标签不是为-1,就是为+1)为例介绍该算法的具体过程。值得注意的是,下面的公式推导是以二分类任务下得出来,所以公式(比如样本权重更新公式)才会显得比较整洁,但如果换成其他任务,如多分类,那么公式会复杂很多。
对于训练样本集 D = ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x n , y n ) D={\left(x_1,y_1\right),\left(x_2,y_2\right),\ldots,(x_n,y_n)} D=(x1,y1),(x2,y2),,(xn,yn),其中标签 y i ∈ { − 1 , + 1 } y_i\in\left\{-1,+1\right\} yi{1,+1},由AdaBoost集成学习算法构造集成模型的基本步骤如下:
(1)令 i = 1 i=1 i=1并设定弱学习器的数目m。对应第一次迭代,使用均匀分布初始化训练样本集的权重分布,令 n n n维向量 w i \mathbf{w}^i wi表示第 i i i次需更新的样本权重,则有:
w 1 = ( w 11 , w 12 , … , w 1 n ) T = ( 1 n , 1 n , … , 1 n ) T \mathbf{w}^1=\left(w_{11},w_{12},\ldots,w_{1n}\right)^T=\left(\frac{1}{n},\frac{1}{n},\ldots,\frac{1}{n}\right)^T w1=(w11,w12,,w1n)T=(n1,n1,,n1)T
(2)使用权重分布为 w i \mathbf{w}^i wi,此时 i = 1 i=1 i=1的训练样本集 D i D_i Di学习得到第 i i i个弱学习器 L i L_i Li
(3)计算 L i L_i Li在训练样本集 D i D_i Di上的分类错误率 e i e_i ei
e i = ∑ k = 1 n w i k I ( L i ( X k ) ≠ y k ) e_i=\sum_{k=1}^{n}{w_{ik}I \left(L_i\left(X_k\right)\neq y_k\right) } ei=k=1nwikI(Li(Xk)=yk)
(4)确定弱学习器 L i L_i Li的组合权重 α i \alpha_i αi( α i \alpha_i αi在最后得到最终的集成模型上用到)。由于弱学习器 L i L_i Li的权重取值应与其分类性能相关,对于分类错误率 e i e_i ei越小的 L i L_i Li,则其权重 α i \alpha_i αi应该越大,故有:
α i = 1 2 ln 1 − e i e i = 1 2 ln ( 1 e i − 1 ) \alpha_i=\frac{1}{2}\text{ln}\frac{1-e_i}{e_i}=\frac{1}{2}\text{ln}(\frac{1}{e_i}-1) αi=21lnei1ei=21ln(ei11)
可能会有人会为,为什么要这么设计 α i \alpha_i αi?我在下面给出了解释。
(5)(重点)依据弱学习器 L i L_i Li对训练样本集 D i D_i Di的分类错误率 e i e_i ei更新样本权重,样本权重更新公式为:
w i + 1 , j = w i j exp ⁡ ( − α i y k L i ( x k ) ) Z i w_{i+1,j}=\frac{w_{ij}\exp(-\alpha_iy_kL_i(x_k))}{Z_i} wi+1,j=Ziwijexp(αiykLi(xk))
其中:
Z i = ∑ k = 1 n w i j exp ⁡ ( − α i y k L i ( X k ) ) Z_i=\sum_{k=1}^{n}{w_{ij}\exp(-\alpha_iy_kL_i(X_k))} Zi=k=1nwijexp(αiykLi(Xk))
为归一化因子,保证更新后权重向量为概率分布;
对权重更新公式的解释
回顾开头,这是一个二分类任务,所以若样本 ( x k , y k ) (x_k,y_k) (xk,yk)分类正确,则要不 y k = L i ( x k ) = 1 y_k=L_i(x_k)=1 yk=Li(xk)=1,要不 y k = L i ( x k ) = − 1 y_k=L_i(x_k)=-1 yk=Li(xk)=1,因此有 y k ∗ L i ( x k ) = 1 y_k*L_i(x_k)=1 ykLi(xk)=1**。**若样本 ( x k , y k ) (x_k,y_k) (xk,yk)分类错误,则要不 y k = − 1 , L i ( x k ) = 1 y_k=-1,L_i(x_k)=1 yk=1,Li(xk)=1,要不 y k = 1 , L i ( x k ) = − 1 y_k=1,L_i(x_k)=-1 yk=1,Li(xk)=1,因此有 y k ∗ L i ( x k ) = − 1 y_k*L_i(x_k)=-1 ykLi(xk)=1
因此公式
w i + 1 , j = w i j exp ⁡ ( − α i y k L i ( x k ) ) Z i w_{i+1,j}=\frac{w_{ij}\exp(-\alpha_iy_kL_i(x_k))}{Z_i} wi+1,j=Ziwijexp(αiykLi(xk))
可以改写
w i + 1 , j = { w i j Z i exp ⁡ ( − α i ) , y k = L i ( x k ) w i j Z i exp ⁡ ( α i ) , y k ≠ L i ( x k ) w_{i+1,j}=\begin{cases} \frac{w_{ij}}{Z_i}\exp(-\alpha_i),y_k=L_i(x_k) \\\frac{w_{ij}}{Z_i}\exp(\alpha_i),y_k\ne L_i(x_k) \end{cases} wi+1,j={Ziwijexp(αi),yk=Li(xk)Ziwijexp(αi),yk=Li(xk)
这样,对于错误的样本会被放大 1 − e i e i \frac{1-e_i}{e_i} ei1ei倍,以便在后续弱学习器构造过程得到应有的重视。
为什么是 1 − e i e i \frac{1-e_i}{e_i} ei1ei倍?
w i + 1 , j , y k ≠ L i ( x k ) w i + 1 , j , y k = L i ( x k ) = w i j Z i exp ⁡ ( α i ) w i j Z i exp ⁡ ( − α i ) = exp ⁡ ( α i ) exp ⁡ ( − α i ) = e 2 ∗ α i = e 2 ∗ 1 2 ln 1 − e i e i = e ln 1 − e i e i = 1 − e i e i \frac{w_{i+1,j},y_k\ne L_i(x_k)}{w_{i+1,j},y_k=L_i(x_k)}=\frac{\frac{w_{ij}}{Z_i}\exp(\alpha_i)}{\frac{w_{ij}}{Z_i}\exp(-\alpha_i)} =\frac{\exp(\alpha_i)}{\exp(-\alpha_i)}=e^{2*\alpha_i}=e^{2*\frac{1}{2}\text{ln}\frac{1-e_i}{e_i}}=e^{\text{ln}\frac{1-e_i}{e_i}}=\frac{1-e_i}{e_i} wi+1,j,yk=Li(xk)wi+1,j,yk=Li(xk)=Ziwijexp(αi)Ziwijexp(αi)=exp(αi)exp(αi)=e2αi=e221lnei1ei=elnei1ei=ei1ei
另外 Z i Z_i Zi的作用是归一化,使得 ∑ j = 1 n w i + 1 , j = 1 \sum_{j=1}^{n}{w_{i+1,j}}=1 j=1nwi+1,j=1
(6)若 i < m i<m i<m,则令 i = i + 1 i=i+1 i=i+1并返回步骤(2),否则执行步骤(7);
(7)对于 m m m个弱分类器 L 1 , L 2 , … , L m L_1{,L}_2,\ldots,L_m L1,L2,,Lm,分别将每个 L i L_i Li按权重 α i \alpha_i αi进行组合:
L = sign ( ∑ i = 1 m α i L i ( X ) ) L=\text{sign}(\sum_{i=1}^{m}{\alpha_iL_i(X)}) L=sign(i=1mαiLi(X))
得到并输出所求集成模型 L L L,算法结束。

参考资料:《机器学习及其应用》汪荣贵等编著

相关文章:

AdaBoost集成学习算法理论解读以及公式为什么这么设计?

本文致力于阐述AdaBoost基本步骤涉及的每一个公式和公式为什么这么设计。 AdaBoost集成学习算法基本上遵从Boosting集成学习思想&#xff0c;通过不断迭代更新训练样本集的样本权重分布获得一组性能互补的弱学习器&#xff0c;然后通过加权投票等方式将这些弱学习器集成起来得到…...

uniapp内置组件uni.navigateTo跳转后页面空白问题解决

文章目录 导文空白问题 导文 在h5上跳转正常 但是在小程序里面跳转有问题 无任何报错 页面跳转地址显示正确&#xff0c;但页面内容为空 空白问题 控制台&#xff1a; 问题解决&#xff1a; 方法1&#xff1a; 可能是没有注册的问题&#xff0c;把没注册的页面 注册一下。 方…...

使用树莓派进行python开发,控制电机的参考资料

网站连接&#xff1a;https://www.cnblogs.com/kevenduan?page1 1、简洁的过程步骤&#xff0c; 2、有代码示例&#xff0c; 3、有注意事项&#xff0c;...

protobuf的使用

protobuf&#xff1a;是一种数据格式&#xff0c;独立于平台&#xff0c;独立于语言&#xff0c;是一种二进制格式&#xff0c;可以存储更加复杂的数据结构&#xff0c;比如图&#xff0c;树&#xff0c;结构体&#xff0c;类 作用&#xff1a; 1.持久化&#xff1a;把数据存…...

笔记15:while语句编程练习

练习一&#xff1a; 编写程序&#xff0c;求 2^24^26^2...n^2? -直到累加和大于或等于 10000 为止&#xff0c;输出累加和 -输出累加式中的项数&#xff0c;以及最大的数 n #include<stdio.h> int main() {int sum 0;int i 1;int n 0;while(sum < 10000)//将sum…...

打开excel时弹出stdole32.tlb

问题描述 打开excel时弹出stdole32.tlb 如下图&#xff1a; 解决方法 打开 Microsoft Excel 并收到关于 stdole32.tlb 的错误提示时&#xff0c;通常意味着与 Excel 相关的某个组件或类型库可能已损坏或不兼容。 stdole32.tlb 是一个用于存储自动化对象定义的类型库&#x…...

349. 两个数组的交集

哈喽&#xff01;大家好&#xff0c;我是奇哥&#xff0c;一位专门给面试官添堵的职业面试员 文章持续更新&#xff0c;可以微信搜索【小奇JAVA面试】第一时间阅读&#xff0c;回复【资料】更有我为大家准备的福利哟&#xff01; 文章目录 一、题目二、答案三、总结 一、题目 …...

重庆交通大学数学与统计学院携手泰迪智能科技共建的“智能工作室”

2024年7月4日&#xff0c;重庆交通大学数学与统计学院与广东泰迪智能科技股份有限公司携手共建的“智能工作室”授牌仪式在南岸校区阳光会议室举行。此举标志着数统学院与广东泰迪公司校企合作新篇章的开启&#xff0c;也预示着学院在智能科技教育领域的深入探索和实践。 广东…...

Pandas在生物信息学中的应用详解

Pandas在生物信息学中的应用详解 引言 生物信息学作为一门将计算机科学和生物学相结合的跨学科领域&#xff0c;正随着高通量实验技术的飞速发展而日益重要。Pandas&#xff0c;作为Python中一个强大的数据处理库&#xff0c;为生物信息学研究提供了便捷高效的数据处理和分析…...

ByteMD富文本编辑器的vue3配置

Git地址&#xff1a;GitHub - bytedance/bytemd: ByteMD v1 repository 控制面板输入 npm install bytemd/vue-next 下载成功后在src/main.ts中引用 import "bytemd/dist/index.css";引入后保存&#xff0c;下面是一些插件&#xff0c;比如说我用到gmf和hightLight&…...

基于antdesign封装一个react的上传组件

项目中遇到了一个上传的需求&#xff0c;看了一下已有的代码很粗糙&#xff0c;而且是直接引用andt的组件&#xff0c;体验不太好&#xff0c;自己使用FormData对象封装了一个上传组件&#xff0c;仅供参考。 代码如下&#xff1a; /*** FileUploadModal* description - 文件选…...

ARM裸机:一步步点亮LED(汇编)

硬件工作原理及原理图查阅 LED物理特性介绍 LED本身有2个接线点&#xff0c;一个是LED的正极&#xff0c;一个是LED的负极。LED这个硬件的功能就是点亮或者不亮&#xff0c;物理上想要点亮一颗LED只需要给他的正负极上加正电压即可&#xff0c;要熄灭一颗LED只需要去掉电压即可…...

【单链表】05 有一个带头结点的单链表L,设计一个算法使其元素递增有序。

&#x1f57a;作者&#xff1a; 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux算法题上机准备 &#x1f618;欢迎 ❤️关注 &#x1f44d;点赞 &#x1f64c;收藏 ✍️留言 题目 有一个带头结点的单链表L,设计一个算法使其元素递增有序。 算法思路 解决办法有很多&…...

C语言入门基础题:奇偶 ASCII 值判断(C语言版)和ASCII码表,什么是ASCII码,它的特点和应用?

1.题目描述&#xff1a; 任意输入一个字符&#xff0c;判断其 ASCII 是否是奇数&#xff0c;若是&#xff0c;输出 YES &#xff0c;否则&#xff0c;输出 NO例如&#xff0c;字符 A 的 ASCI 值是 65 &#xff0c;则输出 YES &#xff0c;若输入字符 B(ASCII 值是 66)&#xff…...

Numpy的广播机制(用于自动处理不同形状的数组)

NumPy 广播是一种强大的机制&#xff0c;允许 NumPy 在执行元素级运算时自动处理不同形状的数组。广播的规则使得无需显式地创建匹配形状的数组&#xff0c;直接进行运算&#xff0c;大大简化了代码并提高了效率。 基本概念 广播的基本思想是让较小的数组在需要的维度上进行扩…...

计算机图形学入门24:材质与外观

1.前言 想要得到一个漂亮准确的场景渲染效果&#xff0c;不只需要物理正确的全局照明算法&#xff0c;也要了解现实中各种物体的表面外观和在图形学中的模拟方式。而物体的外观和材质其实就是同一个意思&#xff0c;不同的材质在光照下就会表现出不同的外观&#xff0c;所以外观…...

FTP、http 、tcp

HTTP VS FTP HTTP &#xff1a;HyperText Transfer Protocol 超文本传输协议&#xff0c;是基于TCP协议 FTP&#xff1a; File Transfer Protocol 文件传输协议&#xff0c; 基于TCP协议&#xff0c; 基于UDP协议的FTP 叫做 TFTP HTTP 协议 通过一个SOCKET连接传输依次会话数…...

【虚幻引擎】UE4初学者系列教程开发进阶实战篇——生存游戏案例

一、课程体系 1 学前必读 2 Character类相关基础 -人物移动控制 -动画蓝图 3 常见游戏机制基础 -碰撞器、触发器 -物体使用接口 -视角切换 4其他相关设计 -背包系统 -锻造系统 -物体破碎效果 -简易种植系统 -互动物体动画 5课程结语 二、UI部分 思维导图部分 实操部分 …...

认识并理解webSocket

今天逛牛客&#xff0c;看到有大佬分享说前端面试的时候遇到了关于webSocket的问题&#xff0c;一看自己都没见过这个知识点&#xff0c;赶紧学习一下&#xff0c;在此记录&#xff01; WebSocket 是一种网络通信协议&#xff0c;提供了全双工通信渠道&#xff0c;即客户端和服…...

Scissor算法-从含有表型的bulkRNA数据中提取信息进而鉴别单细胞亚群

在做基础实验的时候&#xff0c;研究者都希望能够改变各种条件来进行对比分析&#xff0c;从而探索自己所感兴趣的方向。 在做数据分析的时候也是一样的&#xff0c;我们希望有一个数据集能够附加了很多临床信息/表型&#xff0c;然后二次分析者们就可以进一步挖掘。 然而现实…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践

作者&#xff1a;吴岐诗&#xff0c;杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言&#xff1a;融合数据湖与数仓的创新之路 在数字金融时代&#xff0c;数据已成为金融机构的核心竞争力。杭银消费金…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

C++--string的模拟实现

一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现&#xff0c;其目的是加强对string的底层了解&#xff0c;以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量&#xff0c;…...

文件上传漏洞防御全攻略

要全面防范文件上传漏洞&#xff0c;需构建多层防御体系&#xff0c;结合技术验证、存储隔离与权限控制&#xff1a; &#x1f512; 一、基础防护层 前端校验&#xff08;仅辅助&#xff09; 通过JavaScript限制文件后缀名&#xff08;白名单&#xff09;和大小&#xff0c;提…...

高端性能封装正在突破性能壁垒,其芯片集成技术助力人工智能革命。

2024 年&#xff0c;高端封装市场规模为 80 亿美元&#xff0c;预计到 2030 年将超过 280 亿美元&#xff0c;2024-2030 年复合年增长率为 23%。 细分到各个终端市场&#xff0c;最大的高端性能封装市场是“电信和基础设施”&#xff0c;2024 年该市场创造了超过 67% 的收入。…...