守望数据边界:sklearn中的离群点检测技术
守望数据边界:sklearn中的离群点检测技术
在数据分析和机器学习项目中,离群点检测是一项关键任务。离群点,又称异常值或离群点,是指那些与其他数据显著不同的观测值。这些点可能由测量误差、数据录入错误或真实的变异性造成。正确识别和处理离群点对于确保模型质量和准确性至关重要。scikit-learn(简称sklearn),作为Python中一个功能丰富的机器学习库,提供了多种离群点检测方法。本文将详细介绍sklearn中的离群点检测技术,并提供实际的代码示例。
1. 离群点检测的重要性
离群点检测对于以下领域至关重要:
- 数据清洗:在数据预处理阶段识别并处理离群点。
- 欺诈检测:在金融交易中识别潜在的欺诈行为。
- 过程监控:在工业生产中监控设备状态,预防故障。
2. sklearn中的离群点检测方法
sklearn提供了几种用于离群点检测的方法,以下是一些常用的技术:
2.1 Z-Score(标准化分数)
Z-Score方法基于数据的均值和标准差,将数据标准化到一个正态分布上,并计算每个点的Z-Score。
from scipy.stats import zscoredata = [[1, 2], [3, 4], [5, 6], [100, 100]]
data = np.array(data)
z_scores = zscore(data)
threshold = 3 # 通常阈值设为3
outliers = np.where((z_scores > threshold) | (z_scores < -threshold))
2.2 IQR(四分位数范围)
IQR方法使用数据的第一四分位数(Q1)和第三四分位数(Q3)来确定离群点的范围。
Q1 = np.percentile(data, 25, axis=0)
Q3 = np.percentile(data, 75, axis=0)
IQR = Q3 - Q1
threshold = 1.5
outliers = np.where((data < (Q1 - threshold * IQR)) | (data > (Q3 + threshold * IQR)))
2.3 基于密度的方法
基于密度的方法,如DBSCAN,根据数据点的密度而非固定阈值来识别离群点。
from sklearn.cluster import DBSCANdbscan = DBSCAN(min_samples=5, eps=0.5)
dbscan.fit(data)
core_samples_mask = np.zeros_like(dbscan.labels_, dtype=bool)
core_samples_mask[dbscan.core_sample_indices_] = True
outliers = dbscan.labels_ == -1
2.4 Isolation Forest(孤立森林)
Isolation Forest是一种基于随机森林的离群点检测方法,它通过随机选择特征和切分点来“孤立”离群点。
from sklearn.ensemble import IsolationForestiso_forest = IsolationForest(n_estimators=100, contamination=0.01)
iso_forest.fit(data)
outliers = iso_forest.predict(data) == -1
3. 评估离群点检测
评估离群点检测的效果通常比较困难,因为没有绝对的标准。但是,可以通过以下方式进行评估:
- 可视化:使用散点图等方法可视化数据点和检测到的离群点。
- 已知离群点:如果有已知的离群点,可以计算检测的准确性、召回率等指标。
4. 结合实际应用
在实际应用中,离群点检测可以帮助我们识别数据集中的异常行为,从而进行进一步的分析或采取预防措施。
5. 结论
离群点检测是数据分析和机器学习中的一个重要环节。sklearn提供了多种离群点检测方法,每种方法都有其特定的应用场景和优势。通过本文,我们了解到了sklearn中不同的离群点检测技术,并提供了实际的代码示例。
本文的目的是帮助读者更好地理解离群点检测,并掌握在sklearn中实现这些技术的方法。希望读者能够通过本文提高对离群点检测的认识,并在实际项目中有效地应用这些技术。随着数据量的不断增长,离群点检测将继续在数据科学领域发挥重要作用。
相关文章:
守望数据边界:sklearn中的离群点检测技术
守望数据边界:sklearn中的离群点检测技术 在数据分析和机器学习项目中,离群点检测是一项关键任务。离群点,又称异常值或离群点,是指那些与其他数据显著不同的观测值。这些点可能由测量误差、数据录入错误或真实的变异性造成。正确…...
python工作中遇到的坑
1. 字典拷贝 有些场景下,需要对字典拷贝一个副本。这个副本用于保存原始数据,然后原来的字典去参与其他运算,或者作为参数传递给一些函数。 例如, >>> dict_a {"name": "John", "address&q…...
中职网络安全wire0077数据包分析
从靶机服务器的FTP上下载wire0077.pcap,分析该文件,找出黑客入侵使用的协议,提交协议名称 SMTP 分析该文件,找出黑客入侵获取的zip压缩包,提交压缩包文件名 DESKTOP-M1JC4XX_2020_09_24_22_43_12.zip 分析该文件&…...
引领未来:在【PyCharm】中利用【机器学习】与【支持向量机】实现高效【图像识别】
目录 一、数据准备 1. 获取数据集 2. 数据可视化 3. 数据清洗 二、特征提取 1. 数据标准化 2. 图像增强 三、模型训练 1. 划分训练集和测试集 2. 训练 SVM 模型 3. 参数调优 四、模型评估 1. 评估模型性能 2. 可视化结果 五、预测新图像 1. 加载和预处理新图像…...
240707-Sphinx配置Pydata-Sphinx-Theme
Step A. 最终效果 Step B. 为什么选择Pydata-Sphinx-Theme主题 Gallery of sites using this theme — PyData Theme 0.15.4 documentation Step 1. 创建并激活Conda环境 conda create -n rtd_pydata python3.10 conda activate rtd_pydataStep 2. 安装默认的工具包 pip in…...
华为如何做成数字化转型?
目录 企业数字化转型是什么? 华为如何定义数字化转型? 为什么做数字化转型? 怎么做数字化转型? 华为IPD的最佳实践之“金蝶云” 企业数字化转型是什么? 先看一下案例,华为经历了多次战略转型…...
Python | Leetcode Python题解之第229题多数元素II
题目: 题解: class Solution:def majorityElement(self, nums: List[int]) -> List[int]:cnt {}ans []for v in nums:if v in cnt:cnt[v] 1else:cnt[v] 1for item in cnt.keys():if cnt[item] > len(nums)//3:ans.append(item)return ans...
TCP/IP模型和OSI模型的区别(面试题)
OSI模型,是国际标准化组织ISO制定的用于计算机或通讯系统间互联的标准化体系,主要分为7个层级: 物理层数据链路层网络层传输层会话层表示层应用层 虽然OSI模型在理论上更全面,但是在实际网络通讯中,TCP/IP模型更加实…...
UML建模工具Draw.io简介
新书速览|《UML 2.5基础、建模与设计实践 Draw.io是一个非常出色的免费、开源、简洁、方便的绘图软件,利用这款软件可以绘制出生动有趣的图形,包括流程图、地图、网络架构图、UML用例图、流程图等。它支持各种快捷键,免费提供了1000多张画图…...
qt udp 协议 详解
1.qt udp 协议链接举例 在Qt框架中,使用UDP协议进行通信主要依赖于QUdpSocket类。以下是一个基于Qt的UDP通信示例,包括UDP套接字的创建、绑定端口、发送和接收数据报的步骤。 1. 创建UDP套接字 首先,需要创建一个QUdpSocket对象。这通常在…...
ubuntu 换源
sudo apt update 错误如下 Ign:1 http://security.ubuntu.com/ubuntu focal-security InRelease Ign:2 http://us.archive.ubuntu.com/ubuntu focal InRelease Err:3 http://security.ubuntu.com/ubuntu focal-security Release SECURITY: URL redirect target…...
基于ssm的图书管理系统的设计与实现
摘 要 在当今信息技术日新月异的时代背景下,图书管理领域正经历着深刻的变革,传统的管理模式已难以适应现代社会的快节奏和高要求,逐渐向数字化、智能化的方向演进。本论文聚焦于这一转变趋势,致力于设计并成功实现一个基于 SSM&…...
python压缩PDF方案(Ghostscript+pdfc)
第一步:安装Ghostscript Ghostscript是一套建基于Adobe、PostScript及可移植文档格式(PDF)的页面描述语言等而编译成的免费软件。它可以作为文件格式转换器,如PostScript和PDF转换器,也为编程提供API。[1]PDF压缩本质…...
kotlin 基础
文章目录 1、安装 Java 和 Kotlin 环境2、程序代码基本结构3、变量的声明与使用4、数据类型5、数字类型的运算1)布尔类型2)字符类型3)字符串类型 6、 选择结构1)(if - else)2) 选择结构(when&am…...
Spring中的适配器模式和策略模式
1. 适配器模式的应用 1.1适配器模式(Adapter Pattern)的原始定义是:将一个类的接口转换为客户期望的另一个接口,适配器可以让不兼容的两个类一起协同工作。 1.2 AOP中的适配器模式 在Spring的AOP中,使用Advice&#…...
书生浦语大模型实战营---Python task
任务一 请实现一个wordcount函数,统计英文字符串中每个单词出现的次数,通过构建defaultdict字典,可以避免插入值时需要判断值是否存在 from collections import defaultdictdef word_count(text):#构建缓存reval defaultdict(int)words t…...
Chrome 127内置AI大模型攻略
Chrome 127 集成Gemini:本地AI功能 Google将Gemini大模型整合进Chrome浏览器,带来全新免费的本地AI体验: 完全免费、无限制使用支持离线运行,摆脱网络依赖功能涵盖图像识别、自然语言处理、智能推荐等中国大陆需要借助魔法,懂都懂。 安装部署步骤: 1. Chrome V127 dev …...
Yolo的离线运行
Yolo 的离线运行 运行环境准备 比较简单的办法是通过官方的github获取到对应的yolo运行需要的python环境-requirement.txt.通过如下地址可以获取到对应的文件和相应的说明以及实例。 Yolov5 git地址 为了让程序能本地话运行,我们还需要获取相应的模型权重文件&…...
【矿井知识】煤矿动火作业
简介 煤矿动火作业是指在煤矿环境下进行的任何形式的使用火源的工作。这些工作可能包括焊接、切割、加热、打磨等操作,这些操作都可能产生火花、火焰或高温,因此被称为动火作业。 动火作业的主要类型 焊接:包括电弧焊、气焊等,…...
设计模式使用场景实现示例及优缺点(结构型模式——享元模式)
结构型模式 享元模式(Flyweight Pattern) 享元模式,作为软件设计模式中的一员,其核心目标在于通过共享来有效地支持大量细粒度对象的使用。在内存使用优化方面,享元模式提供了一种极为高效的路径,尤其在处…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
