守望数据边界:sklearn中的离群点检测技术
守望数据边界:sklearn中的离群点检测技术
在数据分析和机器学习项目中,离群点检测是一项关键任务。离群点,又称异常值或离群点,是指那些与其他数据显著不同的观测值。这些点可能由测量误差、数据录入错误或真实的变异性造成。正确识别和处理离群点对于确保模型质量和准确性至关重要。scikit-learn(简称sklearn),作为Python中一个功能丰富的机器学习库,提供了多种离群点检测方法。本文将详细介绍sklearn中的离群点检测技术,并提供实际的代码示例。
1. 离群点检测的重要性
离群点检测对于以下领域至关重要:
- 数据清洗:在数据预处理阶段识别并处理离群点。
- 欺诈检测:在金融交易中识别潜在的欺诈行为。
- 过程监控:在工业生产中监控设备状态,预防故障。
2. sklearn中的离群点检测方法
sklearn提供了几种用于离群点检测的方法,以下是一些常用的技术:
2.1 Z-Score(标准化分数)
Z-Score方法基于数据的均值和标准差,将数据标准化到一个正态分布上,并计算每个点的Z-Score。
from scipy.stats import zscoredata = [[1, 2], [3, 4], [5, 6], [100, 100]]
data = np.array(data)
z_scores = zscore(data)
threshold = 3 # 通常阈值设为3
outliers = np.where((z_scores > threshold) | (z_scores < -threshold))
2.2 IQR(四分位数范围)
IQR方法使用数据的第一四分位数(Q1)和第三四分位数(Q3)来确定离群点的范围。
Q1 = np.percentile(data, 25, axis=0)
Q3 = np.percentile(data, 75, axis=0)
IQR = Q3 - Q1
threshold = 1.5
outliers = np.where((data < (Q1 - threshold * IQR)) | (data > (Q3 + threshold * IQR)))
2.3 基于密度的方法
基于密度的方法,如DBSCAN,根据数据点的密度而非固定阈值来识别离群点。
from sklearn.cluster import DBSCANdbscan = DBSCAN(min_samples=5, eps=0.5)
dbscan.fit(data)
core_samples_mask = np.zeros_like(dbscan.labels_, dtype=bool)
core_samples_mask[dbscan.core_sample_indices_] = True
outliers = dbscan.labels_ == -1
2.4 Isolation Forest(孤立森林)
Isolation Forest是一种基于随机森林的离群点检测方法,它通过随机选择特征和切分点来“孤立”离群点。
from sklearn.ensemble import IsolationForestiso_forest = IsolationForest(n_estimators=100, contamination=0.01)
iso_forest.fit(data)
outliers = iso_forest.predict(data) == -1
3. 评估离群点检测
评估离群点检测的效果通常比较困难,因为没有绝对的标准。但是,可以通过以下方式进行评估:
- 可视化:使用散点图等方法可视化数据点和检测到的离群点。
- 已知离群点:如果有已知的离群点,可以计算检测的准确性、召回率等指标。
4. 结合实际应用
在实际应用中,离群点检测可以帮助我们识别数据集中的异常行为,从而进行进一步的分析或采取预防措施。
5. 结论
离群点检测是数据分析和机器学习中的一个重要环节。sklearn提供了多种离群点检测方法,每种方法都有其特定的应用场景和优势。通过本文,我们了解到了sklearn中不同的离群点检测技术,并提供了实际的代码示例。
本文的目的是帮助读者更好地理解离群点检测,并掌握在sklearn中实现这些技术的方法。希望读者能够通过本文提高对离群点检测的认识,并在实际项目中有效地应用这些技术。随着数据量的不断增长,离群点检测将继续在数据科学领域发挥重要作用。
相关文章:
守望数据边界:sklearn中的离群点检测技术
守望数据边界:sklearn中的离群点检测技术 在数据分析和机器学习项目中,离群点检测是一项关键任务。离群点,又称异常值或离群点,是指那些与其他数据显著不同的观测值。这些点可能由测量误差、数据录入错误或真实的变异性造成。正确…...
python工作中遇到的坑
1. 字典拷贝 有些场景下,需要对字典拷贝一个副本。这个副本用于保存原始数据,然后原来的字典去参与其他运算,或者作为参数传递给一些函数。 例如, >>> dict_a {"name": "John", "address&q…...
中职网络安全wire0077数据包分析
从靶机服务器的FTP上下载wire0077.pcap,分析该文件,找出黑客入侵使用的协议,提交协议名称 SMTP 分析该文件,找出黑客入侵获取的zip压缩包,提交压缩包文件名 DESKTOP-M1JC4XX_2020_09_24_22_43_12.zip 分析该文件&…...
引领未来:在【PyCharm】中利用【机器学习】与【支持向量机】实现高效【图像识别】
目录 一、数据准备 1. 获取数据集 2. 数据可视化 3. 数据清洗 二、特征提取 1. 数据标准化 2. 图像增强 三、模型训练 1. 划分训练集和测试集 2. 训练 SVM 模型 3. 参数调优 四、模型评估 1. 评估模型性能 2. 可视化结果 五、预测新图像 1. 加载和预处理新图像…...
240707-Sphinx配置Pydata-Sphinx-Theme
Step A. 最终效果 Step B. 为什么选择Pydata-Sphinx-Theme主题 Gallery of sites using this theme — PyData Theme 0.15.4 documentation Step 1. 创建并激活Conda环境 conda create -n rtd_pydata python3.10 conda activate rtd_pydataStep 2. 安装默认的工具包 pip in…...
华为如何做成数字化转型?
目录 企业数字化转型是什么? 华为如何定义数字化转型? 为什么做数字化转型? 怎么做数字化转型? 华为IPD的最佳实践之“金蝶云” 企业数字化转型是什么? 先看一下案例,华为经历了多次战略转型…...
Python | Leetcode Python题解之第229题多数元素II
题目: 题解: class Solution:def majorityElement(self, nums: List[int]) -> List[int]:cnt {}ans []for v in nums:if v in cnt:cnt[v] 1else:cnt[v] 1for item in cnt.keys():if cnt[item] > len(nums)//3:ans.append(item)return ans...
TCP/IP模型和OSI模型的区别(面试题)
OSI模型,是国际标准化组织ISO制定的用于计算机或通讯系统间互联的标准化体系,主要分为7个层级: 物理层数据链路层网络层传输层会话层表示层应用层 虽然OSI模型在理论上更全面,但是在实际网络通讯中,TCP/IP模型更加实…...
UML建模工具Draw.io简介
新书速览|《UML 2.5基础、建模与设计实践 Draw.io是一个非常出色的免费、开源、简洁、方便的绘图软件,利用这款软件可以绘制出生动有趣的图形,包括流程图、地图、网络架构图、UML用例图、流程图等。它支持各种快捷键,免费提供了1000多张画图…...
qt udp 协议 详解
1.qt udp 协议链接举例 在Qt框架中,使用UDP协议进行通信主要依赖于QUdpSocket类。以下是一个基于Qt的UDP通信示例,包括UDP套接字的创建、绑定端口、发送和接收数据报的步骤。 1. 创建UDP套接字 首先,需要创建一个QUdpSocket对象。这通常在…...
ubuntu 换源
sudo apt update 错误如下 Ign:1 http://security.ubuntu.com/ubuntu focal-security InRelease Ign:2 http://us.archive.ubuntu.com/ubuntu focal InRelease Err:3 http://security.ubuntu.com/ubuntu focal-security Release SECURITY: URL redirect target…...
基于ssm的图书管理系统的设计与实现
摘 要 在当今信息技术日新月异的时代背景下,图书管理领域正经历着深刻的变革,传统的管理模式已难以适应现代社会的快节奏和高要求,逐渐向数字化、智能化的方向演进。本论文聚焦于这一转变趋势,致力于设计并成功实现一个基于 SSM&…...
python压缩PDF方案(Ghostscript+pdfc)
第一步:安装Ghostscript Ghostscript是一套建基于Adobe、PostScript及可移植文档格式(PDF)的页面描述语言等而编译成的免费软件。它可以作为文件格式转换器,如PostScript和PDF转换器,也为编程提供API。[1]PDF压缩本质…...
kotlin 基础
文章目录 1、安装 Java 和 Kotlin 环境2、程序代码基本结构3、变量的声明与使用4、数据类型5、数字类型的运算1)布尔类型2)字符类型3)字符串类型 6、 选择结构1)(if - else)2) 选择结构(when&am…...
Spring中的适配器模式和策略模式
1. 适配器模式的应用 1.1适配器模式(Adapter Pattern)的原始定义是:将一个类的接口转换为客户期望的另一个接口,适配器可以让不兼容的两个类一起协同工作。 1.2 AOP中的适配器模式 在Spring的AOP中,使用Advice&#…...
书生浦语大模型实战营---Python task
任务一 请实现一个wordcount函数,统计英文字符串中每个单词出现的次数,通过构建defaultdict字典,可以避免插入值时需要判断值是否存在 from collections import defaultdictdef word_count(text):#构建缓存reval defaultdict(int)words t…...
Chrome 127内置AI大模型攻略
Chrome 127 集成Gemini:本地AI功能 Google将Gemini大模型整合进Chrome浏览器,带来全新免费的本地AI体验: 完全免费、无限制使用支持离线运行,摆脱网络依赖功能涵盖图像识别、自然语言处理、智能推荐等中国大陆需要借助魔法,懂都懂。 安装部署步骤: 1. Chrome V127 dev …...
Yolo的离线运行
Yolo 的离线运行 运行环境准备 比较简单的办法是通过官方的github获取到对应的yolo运行需要的python环境-requirement.txt.通过如下地址可以获取到对应的文件和相应的说明以及实例。 Yolov5 git地址 为了让程序能本地话运行,我们还需要获取相应的模型权重文件&…...
【矿井知识】煤矿动火作业
简介 煤矿动火作业是指在煤矿环境下进行的任何形式的使用火源的工作。这些工作可能包括焊接、切割、加热、打磨等操作,这些操作都可能产生火花、火焰或高温,因此被称为动火作业。 动火作业的主要类型 焊接:包括电弧焊、气焊等,…...
设计模式使用场景实现示例及优缺点(结构型模式——享元模式)
结构型模式 享元模式(Flyweight Pattern) 享元模式,作为软件设计模式中的一员,其核心目标在于通过共享来有效地支持大量细粒度对象的使用。在内存使用优化方面,享元模式提供了一种极为高效的路径,尤其在处…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...
省略号和可变参数模板
本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...
淘宝扭蛋机小程序系统开发:打造互动性强的购物平台
淘宝扭蛋机小程序系统的开发,旨在打造一个互动性强的购物平台,让用户在购物的同时,能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机,实现旋转、抽拉等动作,增…...
算法打卡第18天
从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 示例 1: 输入:inorder [9,3,15,20,7…...
二维FDTD算法仿真
二维FDTD算法仿真,并带完全匹配层,输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...
