当前位置: 首页 > news >正文

opencv 中如何通过欧式距离估算实际距离(厘米)

1:这个方法个人测试觉得是正确的,误差较小,目前满足我当前的需求,如果方法不对,请大家评论,完善。

2:确保拍摄的参照物是垂直的,如果不垂直,就会有误差,不垂直的角度越大,误差越大。

实际中主要是利用无人机拍摄的俯视图,计算边缘到特定点的距离。

3:使用棋盘格作为物理参照物,如下

4:代码

import cv2
import numpy as np
import glob
def get_K_and_D(checkerboard, imgsPath):CHECKERBOARD = checkerboardsubpix_criteria = (cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 0.01)calibration_flags = cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC+cv2.fisheye.CALIB_CHECK_COND+cv2.fisheye.CALIB_FIX_SKEWobjp = np.zeros((1, CHECKERBOARD[0]*CHECKERBOARD[1], 3), np.float32)objp[0,:,:2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2)*50_img_shape = None#print(objp)#objp+=200objpoints = []imgpoints = []images = glob.glob(imgsPath + '/*.jpg')for fname in images:img = cv2.imread(fname)if _img_shape == None:_img_shape = img.shape[:2]else:assert _img_shape == img.shape[:2], "All images must share the same size."gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)ret, corners = cv2.findChessboardCorners(gray, CHECKERBOARD,cv2.CALIB_CB_ADAPTIVE_THRESH) #+cv2.CALIB_CB_FAST_CHECK+cv2.CALIB_CB_NORMALIZE_IMAGE)if ret == True:objpoints.append(objp)cv2.cornerSubPix(gray,corners,(5,5),(-1,-1),subpix_criteria)imgpoints.append(corners)#print(images)N_OK = len(objpoints)#print(objpoints)K = np.zeros((3, 3))D = np.zeros((4, 1))rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)]tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)]rms, _, _, _, _ = cv2.fisheye.calibrate(objpoints,imgpoints,gray.shape[::-1],K,D,rvecs,tvecs,calibration_flags,(cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6))DIM = _img_shape[::-1]print("Found " + str(N_OK) + " valid images for calibration")print("DIM=" + str(_img_shape[::-1]))print("K=np.array(" + str(K.tolist()) + ")")print("D=np.array(" + str(D.tolist()) + ")")print("rms",rms)return DIM, K, D,cornersif __name__ == '__main__':BORAD_HEIGHT=3BORAD_WIDTH=3radius = 1color = (0, 0, 255)  # BGR格式,红色thickness = 2DIM, K, D,corners = get_K_and_D((BORAD_HEIGHT, BORAD_WIDTH), './distance')   dst_img=cv2.imread("./distance/img_dst_distance.jpg")cnt=0print(corners)for index in range(len(corners)): x, y = corners[index][0]color = (0, 0, 255)  # BGR格式,红色cv2.putText(dst_img, str(cnt), (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 1,color, thickness)color = (0, 255, 255)  # BGR格式,红色cv2.circle(dst_img,(int(x),int(y)), radius, color, thickness)cnt+=1dist_total=0for i in range(BORAD_HEIGHT):print(i * BORAD_WIDTH,(i+1) * BORAD_WIDTH-1)print(corners[i * BORAD_WIDTH,:])dist = cv2.norm(corners[i * BORAD_WIDTH,:], corners[(i+1) * BORAD_WIDTH-1,:], cv2.NORM_L2)dist_total += dist / (BORAD_WIDTH - 1)dist_square = dist_total / BORAD_HEIGHTprint("dst_img.shape:",dst_img.shape)print("dist_square:",dist_square)realy_board_length=13.5/2 #厘米,13.5是从尺子测量出来2个正方形边长的长度,所以单个要除以2realy_H=dst_img.shape[0]*realy_board_length/dist_squarerealy_W=dst_img.shape[1]*realy_board_length/dist_squareprint("realy_H",realy_H)print("realy_W",realy_W)ret=1cv2.drawChessboardCorners(dst_img, (BORAD_HEIGHT,BORAD_WIDTH), corners, ret)cv2.imshow("org_img", dst_img)cv2.waitKey(0) 

相关文章:

opencv 中如何通过欧式距离估算实际距离(厘米)

1:这个方法个人测试觉得是正确的,误差较小,目前满足我当前的需求,如果方法不对,请大家评论,完善。 2:确保拍摄的参照物是垂直的,如果不垂直,就会有误差,不垂…...

Flask+Layui开发案例教程

基于 Python 语言的敏捷开发框架_DjangoAdmin敏捷开发框架FlaskLayui版本_开发文档 软件产品基于 Python 语言,采用 Flask2.x、Layui、MySQL 等技术栈精心打造的一款集模块化、高性能、组件化于一体的企业级敏捷开发框架,本着简化开发、提升开发效率的初…...

复现ORB3-YOLO8项目记录

文章目录 1.编译错误1.1 错误11.2 错误21.3 错误31.4 错误4 1.编译错误 首先ORB-SLAM相关项目已经写过很多篇博客了,从ORB-SLAM2怎么运行,再到现在的项目。关于环境已经不想多说了 1.1 错误1 – DEPENDENCY_LIBS : /home/lvslam/ORB3-YOLO8/Thirdparty…...

【jvm】字符串常量池问题

目录 一、基本概念1.1 说明1.2 特点 二、存放位置2.1 JDK1.6及以前2.2 JDK1.72.3 JDK1.8及以后 三、工作原理3.1 创建字符串常量3.2 使用new关键字创建字符串 四、intern()方法4.1 作用 五、优点六、字节码分析6.1 示例16.1.1 代码示例6.1.2 字节码6.1.3 解析 6.2 示例26.2.1 代…...

STM32学习和实践笔记(39):I2C EEPROM实验

1.I2C总线介绍 I2C(Inter-Integrated Circuit)总线是由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备,是微电子通信控制领域广泛采用的一种总线标准。 它是同步通信的一种特殊形式,具有接口线少,控制方式简单,器件封装形式小,通信速率较高等优点。I…...

【Js】导出 HTML 为 Word 文档

在 Web 开发中,有时我们希望用户能够将网页上的 HTML 内容保存为 Word 文档,以便更方便地分享和打印。 html样式 word文档 工具准备 1、 html-docx-js - npm html-docx-js是一个 JavaScript 库,用于将 HTML 内容转换为 Word 文档的格式。它…...

c++入门基础篇(上)

目录 前言: 1.c++的第一个程序 2.命名空间 2.1 namespace的定义 2.2 命名空间使用 3.c++输入&输出 4.缺省参数 5.函数重载 前言: 我们在之前学完了c语言的大部分语法知识,是不是意…...

Java实现数据结构——双链表

目录 一、前言 二、实现 2.1 类的创建 三、对链表操作实现 3.1 打印链表 3.2 插入数据 3.2.1 申请新节点 3.2.2 头插 ​编辑 3.2.3 尾插 3.2.4 链表长度 3.2.5 任意位置插入 3.3 删除数据 3.3.1 头删 3.3.2 尾删 3.3.3 删除指定位置数据 3.3.4 删除指定数据 3…...

Python应用爬虫下载QQ音乐歌曲!

目录: 1.简介怎样实现下载QQ音乐的过程; 2.代码 1.下载QQ音乐的过程 首先我们先来到QQ音乐的官网: https://y.qq.com/,在搜索栏上输入一首歌曲的名称; 如我在上输入最美的期待,按回车来到这个画面 我们首…...

AWS-WAF-Log S3存放,通过Athena查看

1.创建好waf-cdn 并且设置好规则和log存储方式为s3 2. Amazon Athena 服务 使用 (注意s3桶位置相同得区域) https://docs.aws.amazon.com/zh_cn/athena/latest/ug/waf-logs.html#waf-example-count-matched-ip-addresses 官方文档参考,建一个分区查询表…...

无法解析主机:mirrorlist.centos.org Centos 7

从 2024 年 7 月 1 日起,在 CentOS 7 上,请切换到 Vault 存档存储库: vi /etc/yum.repos.d/CentOS-Base.repo 复制/粘贴以下内容并注意您的操作系统版本。如果需要,请更改。此配置中的版本为 7.9.2009: [base] name…...

自动驾驶论文总结

1.预测 1.1光栅化 代表性论文 Motion Prediction of Traffic Actors for Autonomous Driving using Deep Convolutional Networks (Uber)MultiPath (Waymo) 问题 渲染信息丢失感受野有限高计算复杂度 1.2图神经网络 1.2.1 图卷积 LaneGCN (uber 2020) 1.2.2 边卷积 V…...

【uniapp微信小程序】uniapp微信小程序——页面通信

uniapp微信小程序——页面通信 在开发微信小程序过程中,页面之间的通信是一个常见需求。在使用 uniapp 开发微信小程序时,我们可以采用多种方式实现页面之间的数据传递和状态共享。本文将详细介绍几种常见的实现方式,以供开发者参考。 1. 页…...

【笔记】从零开始做一个精灵龙女-画贴图阶段(上)

此文只是我的笔记,不包全看懂,有问题可评论 PS贴图加工 1.打开ps 拖入uv图,新建图层,设置背景色为灰色,改一下图层名字 2.按z缩小一下uv图层,拖入实体uv图片(目的是更好上色,比如…...

线性代数|机器学习-P22逐步最小化一个函数

文章目录 1. 概述2. 泰勒公式3. 雅可比矩阵4. 经典牛顿法4.1 经典牛顿法理论4.2 牛顿迭代法解求方程根4.3 牛顿迭代法解求方程根 Python 5. 梯度下降和经典牛顿法5.1 线搜索方法5.2 经典牛顿法 6. 凸优化问题6.1 约束问题6.1 凸集组合 Mit麻省理工教授视频如下:逐步…...

SpringCloudAlibaba Nacos配置中心与服务发现

目录 1.配置 1.1配置的特点 只读 伴随应用的整个生命周期 多种加载方式 配置需要治理 1.2配置中心 2.Nacos简介 2.1特性 服务发现与服务健康检查 动态配置管理 动态DNS服务 服务和元数据管理 3.服务发现 1.配置 应用程序在启动和运行的时候往往需要读取一些配置信…...

.NET 一款获取内网共享机器的工具

01阅读须知 此文所提供的信息只为网络安全人员对自己所负责的网站、服务器等(包括但不限于)进行检测或维护参考,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用此文所提供的信息而造成的直接或间接后果和损失&#xf…...

备考美国数学竞赛AMC8和AMC10:吃透1850道真题和知识点(持续)

距离接下来的AMC8、AMC10美国数学竞赛还有几个月的时间,实践证明,做真题,吃透真题和背后的知识点是备考AMC8、AMC10有效的方法之一。 通过做真题,可以帮助孩子找到真实竞赛的感觉,而且更加贴近比赛的内容,…...

旅游景区度假村展示型网站如何建设渠道品牌

景区、度假村、境外旅游几乎每天的人流量都非常高,还包括本地附近游等,对景区及度假村等固定高流量场所,品牌和客户赋能都是需要完善的,尤其是信息展示方面,旅游客户了解前往及查看信息等。 通过雨科平台建设景区度假…...

Python酷库之旅-第三方库Pandas(021)

目录 一、用法精讲 52、pandas.from_dummies函数 52-1、语法 52-2、参数 52-3、功能 52-4、返回值 52-5、说明 52-6、用法 52-6-1、数据准备 52-6-2、代码示例 52-6-3、结果输出 53、pandas.factorize函数 53-1、语法 53-2、参数 53-3、功能 53-4、返回值 53-…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...

Java 加密常用的各种算法及其选择

在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

uniapp 实现腾讯云IM群文件上传下载功能

UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中,群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS,在uniapp中实现: 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...

面试高频问题

文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...