hnust 1794: 机器翻译
hnust 1794: 机器翻译
题目描述
小晨的电脑上安装了一个机器翻译软件,他经常用这个软件来翻译英语文章。
这个翻译软件的原理很简单,它只是从头到尾,依次将每个英文单词用对应的中文含义来替换。对于每个英文单词,软件会先在内存中查找这个单词的中文含义,如 果内存中有,软件就会用它进行翻译;如果内存中没有,软件就会在外存中的词典内查找,查出单词的中文含义然后翻译,并将这个单词和译义放入内存,以备后续 的查找和翻译。
假设内存中有M个单元,每单元能存放一个单词和译义。每当软件将一个新单词存入内存前,如果当前内存中已存入的单词数不超过M−1,软件会将新单词存入一个未使用的内存单元;若内存中已存入M个单词,软件会清空最早进入内存的那个单词,腾出单元来,存放新单词。
假设一篇英语文章的长度为N个单词。给定这篇待译文章,翻译软件需要去外存查找多少次词典?假设在翻译开始前,内存中没有任何单词。
输入
输入文件共2行。每行中两个数之间用一个空格隔开。
第一行为两个正整数M和N,代表内存容量和文章的长度。
第二行为N个非负整数,按照文章的顺序,每个数(大小不超过1000)代表一个英文单词。文章中两个单词是同一个单词,当且仅当它们对应的非负整数相同。
【输入输出样例1说明】
整个查字典过程如下:每行表示一个单词的翻译,冒号前为本次翻译后的内存状况:
空:内存初始状态为空。
1.1:查找单词1并调入内存。
2.1 2:查找单词2并调入内存。
3.1 2:在内存中找到单词1。
4.1 2 5:查找单词5并调入内存。
5.2 5 4:查找单词4并调入内存替代单词1。
6.2 5 4:在内存中找到单词4。
7.5 4 1:查找单词1并调入内存替代单词2。
共计查了5次词典。
【数据范围】
对于10%的数据有M=1,N≤5。
对于100%的数据有0<M≤100,0<=N≤1000。
输出
输出共1行,包含一个整数,为软件需要查词典的次数。
样例输入 Copy
3 7
1 2 1 5 4 4 1
样例输出 Copy
5
提示
此题要求使用队列来做,但是可能要略微改动ADT.
解题过程
题目分析
这个问题是一个典型的使用队列实现的缓存淘汰问题,也称为LRU(Least Recently Used)缓存淘汰算法问题。我们需要模拟翻译软件的内存管理过程,计算在整个文章翻译过程中需要查询字典的次数。
输入格式分析
- 第一行包含两个正整数
M和N,分别表示内存容量和文章的长度。 - 第二行包含
N个非负整数,表示文章中的单词序列。
问题难点
- 如何有效模拟内存的存储和淘汰过程。
- 如何快速判断一个单词是否已经在内存中。
算法选择
- 使用队列(Queue)来模拟内存的存储结构,因为队列可以方便地实现先进先出(FIFO)的特性。
解决过程
-
初始化:创建一个队列来存储内存中的单词,以及一个变量来记录查询字典的次数。
-
遍历单词序列:逐个处理输入的单词序列。
- 对于每个单词:
- 检查该单词是否已经在队列(内存)中:
- 如果在,将该单词移动到队列的末尾,表示最近使用过。
- 如果不在,增加查询字典的次数,然后将该单词添加到队列的末尾。
- 如果添加新单词后,队列的长度超过了内存容量
M,则移除队列头部的单词,表示淘汰最早进入内存的单词。
- 检查该单词是否已经在队列(内存)中:
- 对于每个单词:
-
输出结果:在处理完所有单词后,输出查询字典的总次数。
代码分解
- 输入处理:读取内存容量
m和文章长度n。 - 数据结构初始化:创建一个队列
q来模拟内存,以及一个布尔数组st来标记单词是否在内存中。 - 文章翻译模拟:遍历文章中的每个单词,根据单词是否在内存中,执行相应的操作:
- 如果单词不在内存中,且内存未满,直接添加到内存。
- 如果内存已满,先淘汰最早进入内存的单词,再添加新单词。
- 如果单词已在内存中,更新其在内存中的位置,表示最近使用过。
- 查询次数统计:在添加新单词到内存时,如果该单词之前不在内存中,增加查询字典的次数。
- 结果输出:输出查询字典的总次数。
总结
本文通过一段C++代码,展示了如何使用队列实现LRU缓存淘汰算法,并解决了机器翻译软件中的内存管理问题。这种方法在实际应用中非常有效,可以帮助我们更好地理解和掌握数据结构和算法的基本概念。
注意事项
- 在读取输入时,要注意处理可能的异常情况,如非法输入。
- 在模拟内存管理时,要确保队列和数组的正确同步更新。
- 在实际编程中,要注意代码的可读性和可维护性,合理使用变量名和注释。
代码解析
这段C++代码实现了一个基于队列的缓存淘汰算法,用于模拟题目中描述的机器翻译软件的内存管理过程。具体来说,它计算了在给定内存容量下,翻译一篇英语文章需要查询字典的次数。
1. 头文件和命名空间
- 包含
<iostream>和<queue>头文件,分别用于输入输出和队列操作。 - 使用
using namespace std;简化代码。
2. 常量定义
N定义了数组st的最大大小,这里假设所有单词的编号不会超过1010。
3. 全局变量
m表示内存容量。n表示文章的长度,即文章中的单词数量。st[N]是一个布尔数组,用于标记单词是否已加载到内存中。
4. 主函数main
- 读取输入的内存容量
m和文章长度n。 - 创建一个队列
q,用于模拟内存中的单词。 - 初始化一个计数器
res,用于记录查询字典的次数。
5. 读取单词
- 使用循环读取文章中的每个单词。
- 对于每个单词
x:- 如果
st[x]为false,表示单词不在内存中:- 如果队列
q的大小已经达到内存容量m,则从队列前端移除一个单词,并更新st数组。 - 将新单词添加到队列中,并标记为已加载到内存。
- 增加查询字典的次数
res。
- 如果队列
- 如果
st[x]为true,表示单词已在内存中,无需查询字典。
- 如果
6. 输出结果
- 循环结束后,输出查询字典的总次数
res。
AC代码
#include <iostream>
#include <queue>using namespace std;const int N = 1010;int m, n;
bool st[N];int main()
{cin >> m >> n;queue<int> q;int res = 0;for (int i = 0; i < n; i ++ ){int x;cin >> x;if (!st[x]){if (q.size() == m){int t = q.front();st[t] = false;q.pop();}q.push(x);st[x] = true;res ++ ;}}cout << res << endl;return 0;
}相关文章:
hnust 1794: 机器翻译
hnust 1794: 机器翻译 题目描述 小晨的电脑上安装了一个机器翻译软件,他经常用这个软件来翻译英语文章。 这个翻译软件的原理很简单,它只是从头到尾,依次将每个英文单词用对应的中文含义来替换。对于每个英文单词,软件会先在内存…...
AI人工智能开源大模型生态体系分析
人工智能开源大模型生态体系研究 "人工智能开源大模型生态体系研究报告v1.0"揭示,AI(A)的飞速发展依赖于三大核心:数据、算法和算力。这一理念已得到业界广泛认同,三者兼备才能推动AI的壮大发展。随着AI大模型的扩大与普及…...
ArkTS学习笔记_封装复用之@Styles装饰器
ArkTS学习笔记_封装复用之Styles装饰器 背景: 在开发中,如果每个组件的样式都需要单独设置,就会出现大量代码在进行重复样式设置,虽然可以复制粘贴,但为了代码简洁性和后续方便维护,给出的思路是ÿ…...
根据vue学习react
react的函数式组件与vue2是很像的 一、基础类似点 1、组件下拥有一个根节点,vue2是template,react是幽灵标签<> 2、vue2是{{}}以及v-model,react的绑定是{} 3、vue2编译html是v-html,react是{},并且react的jsx中…...
Hi3861 OpenHarmony嵌入式应用入门--HTTPD
httpd 是 Apache HTTP Server 的守护进程名称,Apache HTTP Server 是一种广泛使用的开源网页服务器软件。 本项目是从LwIP中抽取的HTTP服务器代码; Hi3861 SDK中已经包含了一份预编译的lwip,但没有开启HTTP服务器功能(静态库无法…...
MICS2024|少样本学习、多模态技术以及大语言模型在医学图像处理领域的研究进展|24-07-14
小罗碎碎念 本期推文主题 今天的会议很多主题都集中在大模型、多模态这两个方面,很明显,这两个方向都是目前的研究热点。 所以,我这一期推文会先简单的分析一下秦文健(中科院)和史淼晶(同济大学)…...
ConfigMap-secrets-静态pod
一.ConfigMap 1.概述 ConfigMap资源,简称CM资源,它生成的键值对数据,存储在ETCD数据库中 应用场景:主要是对应用程序的配置 pod通过env变量引入ConfigMap,或者通过数据卷挂载volume的方式引入ConfigMap资源 官方解释…...
SQL Error: 1406, SQLState: 22001
SQL错误代码1406和SQLState 22001通常表示“列数据过长”错误。这意味着尝试插入或更新列中的值,但该值的长度超过了该列允许的最大长度。 解决此问题的几个步骤: 检查列长度: 确定引起错误的列。检查数据库架构中该列允许的最大长度。 验证…...
【密码学基础】基于LWE(Learning with Errors)的全同态加密方案
学习资源: 全同态加密I:理论与基础(上海交通大学 郁昱老师) 全同态加密II:全同态加密的理论与构造(Xiang Xie老师) 现在第二代(如BGV和BFV)和第三代全同态加密方案都是基…...
Linux - 基础开发工具(yum、vim、gcc、g++、make/Makefile、git)
目录 Linux软件包管理器 - yum Linux下安装软件的方式 认识yum 查找软件包 安装软件 如何实现本地机器和云服务器之间的文件互传 卸载软件 Linux编辑器 - vim vim的基本概念 vim下各模式的切换 vim命令模式各命令汇总 vim底行模式各命令汇总 vim的简单配置 Linux编译器 - gc…...
网络安全法律框架更新:最新合规要求与企业应对策略
网络安全法律框架的最新更新 近期,中国的网络安全法律框架经历了重要的更新。2022年,《网络安全法》迎来了首次修改,这一修订主要是为了与《数据安全法》和《个人信息保护法》等新实施的法律进行衔接协调,完善法律责任制度&#x…...
数仓工具—Hive语法之正则表达式函数
正则表达式函数 之前我们介绍过like rlike regexp 这些关键字,都是和匹配有关的,今天我们介绍一下hive 的REGEXP_REPLACE 和REGEXP_EXTRACT 函数,背景是使用Hive正则表达式函数提取数字 在我的其他文章中,我们已经看到了如何使用Hive正则表达式从字符串中提取日期值。正则…...
WKCTF 2024 easy_heap
很经典的house of orange unsortedbin attack FSOP 变量覆盖 不能 free,那首先想到就是 house of orange泄露Libc基址,然后unsortedbin attack。 但是只能show(8),就不能用largebin的套路来泄露堆地址了,那怎么办呢? …...
SQL 多变关联使用子查询去重
不去重状态 select a.*,b.recon_amt from free_settlement_first aleft join free_settlement_second b on a.settlement_first_id b.settlement_first_id 有2条数据出现了重复 使用子查询去重 select a.*,b.recon_amt from free_settlement_first aleft join free_settlem…...
php表单提交并自动发送邮件给某个邮箱(示例源码下载)
只需要将以下代码内容进行复制即可用到自己的程序/API接口中: <?php if(!empty($_POST[is_post]) && $_POST[is_post]1){$url "https://www.aoksend.com/index/api/send_email";$name $_POST[name];$email $_POST[email];$subject $_POS…...
论文翻译:Large Language Models for Education: A Survey
目录 大型语言模型在教育领域的应用:一项综述摘要1 引言2. 教育中的LLM特征2.1. LLMs的特征2.2 教育的特征2.2.1 教育发展过程 低进入门槛。2.2.2. 对教师的影响2.2.3 教育挑战 2.3 LLMEdu的特征2.3.1 "LLMs 教育"的具体体现2.3.2 "LLMs 教育"…...
7.13实训日志
上午 学习网络安全的过程中,我们深入了解了网络的不同层面和技术,从表层网络到深网再到暗网,以及涉及的产业分类和技术工具。这些知识不仅帮助我们理解网络的复杂性,还揭示了如何应对和防范各种网络威胁。 首先,我们…...
【力扣】每日一题—第70题,爬楼梯
题目: 假设你正在爬楼梯。需要n阶你才能到达楼顶。 每次你可以爬1或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 思路: 我开始是写了一个函数计算爬一层和爬二层的个数,之后排列求和,但是超范围了,…...
Docker修改国内镜像源
如果docker已将安装好 参考:https://github.com/cmliu/CF-Workers-docker.io sudo mkdir -p /etc/dockercd /etc/dockersudo vim daemon.json #输入以下内容 { "registry-mirrors": ["https://docker.fxxk.dedyn.io"] } #重启docker服务 su…...
安防监控视频平台LntonCVS视频融合共享平台智慧消防实现远程集中视频监控方案
近年来,电力系统内变电站着火事件频发,这对消防安全管理提出了严峻挑战。我国消防安全基础设施不完善、管理机制不健全、应急处置能力不足及公众消防安全意识淡薄等问题,严重制约了消防安全的提升。因此,加强变电站的消防安全管理…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...
django blank 与 null的区别
1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是,要注意以下几点: Django的表单验证与null无关:null参数控制的是数据库层面字段是否可以为NULL,而blank参数控制的是Django表单验证时字…...
Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...
