【AI大模型】李彦宏从“卷模型”到“卷应用”的深度解析:卷用户场景卷能给用户解决什么问题
文章目录
- 一、理解李彦宏的发言
- 1.1 李彦宏的核心观点
- 1.2 背景分析
- 二、技术发展:从辨别式到生成式
- 2.1 辨别式AI技术
- 2.2 生成式AI技术
- 2.3 技术发展的挑战
- 三、“卷应用”:聚焦实际应用与价值
- 3.1 应用为王
- 3.2 技术落地的关键
- 四、“卷场景”:多元化应用场景的探索
- 4.1 行业痛点与解决方案
- 4.2 场景化应用的优势
- 五、未来展望:技术与应用的融合
- 5.1 AI时代的新趋势
- 5.2 为用户解决实际问题
- 六、AI应用案例分析
- 6.1 医疗领域:早期疾病检测
- 6.2 金融领域:智能投顾
- 6.3 零售领域:个性化推荐
- 七、未来技术与应用的融合趋势
- 7.1 跨领域合作
- 7.2 边缘计算
- 7.3 自适应系统
- 八、总结
在2024年7月4日于上海世博中心举办的世界人工智能大会上,百度创始人李彦宏的发言引起了广泛关注。他提到,“大家不要卷模型,要卷应用!”这句话看似简单,却深刻揭示了当前AI发展的关键问题和未来方向。在这篇博文中,我们将详细解读李彦宏的发言,并探讨技术发展、应用场景、未来趋势及其对用户的实际影响。
一、理解李彦宏的发言
1.1 李彦宏的核心观点
李彦宏指出,AI技术已经从辨别式转向生成式,然而技术本身并不是终极目的,其真正价值在于如何应用于实际场景,解决实际问题。他特别强调了避免“超级应用陷阱”的重要性,这一陷阱指的是过分追求用户日活跃量(DAU),而忽视了应用的实际效果和产业价值。
1.2 背景分析
当前,AI技术迅猛发展,特别是大模型的出现,如GPT-4等,在自然语言处理、图像生成等方面展现出强大的能力。然而,过度追求模型的复杂度和参数规模,可能会忽略了实际应用的价值。这也是李彦宏发言的核心要点:技术进步固然重要,但更关键的是如何将这些技术应用于实际场景,以解决实际问题。
二、技术发展:从辨别式到生成式
2.1 辨别式AI技术
辨别式AI技术主要用于分类和识别任务,比如图像分类、语音识别等。这类技术通常依赖于大量标注数据,通过监督学习进行训练。典型的辨别式模型包括卷积神经网络(CNN)、循环神经网络(RNN)等。
import tensorflow as tf
from tensorflow.keras import layers, models# 构建一个简单的卷积神经网络模型
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))# 编译模型
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 模型结构
model.summary()
2.2 生成式AI技术
生成式AI技术则更强调内容生成,比如文本生成、图像生成等。这类技术通常依赖于无监督或自监督学习,通过生成对抗网络(GAN)、变分自编码器(VAE)等模型进行训练。生成式AI技术不仅能理解和识别数据,还能创造新的数据。
import torch
from torch import nn, optim# 定义生成器网络
class Generator(nn.Module):def __init__(self):super(Generator, self).__init__()self.main = nn.Sequential(nn.Linear(100, 256),nn.ReLU(True),nn.Linear(256, 512),nn.ReLU(True),nn.Linear(512, 1024),nn.ReLU(True),nn.Linear(1024, 784),nn.Tanh())def forward(self, x):return self.main(x)# 定义判别器网络
class Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()self.main = nn.Sequential(nn.Linear(784, 1024),nn.ReLU(True),nn.Linear(1024, 512),nn.ReLU(True),nn.Linear(512, 256),nn.ReLU(True),nn.Linear(256, 1),nn.Sigmoid())def forward(self, x):return self.main(x)# 创建生成器和判别器
netG = Generator()
netD = Discriminator()# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizerD = optim.Adam(netD.parameters(), lr=0.0002)
optimizerG = optim.Adam(netG.parameters(), lr=0.0002)
2.3 技术发展的挑战
尽管生成式AI技术展示了巨大的潜力,但也面临以下挑战:
- 资源消耗:大模型的训练和运行需要大量的计算资源和能量。
- 数据隐私:训练大模型需要大量数据,这些数据的收集和使用涉及隐私和安全问题。
- 泛化能力:尽管大模型在许多任务上表现出色,但在某些特定领域或任务中可能表现不佳。
三、“卷应用”:聚焦实际应用与价值
3.1 应用为王
在李彦宏的发言中,他强调了“卷应用”而非“卷模型”。这意味着AI的发展应该更多地关注如何将技术应用于实际场景,解决现实问题。以下是几个成功应用的案例:
- 医疗领域:AI可以通过图像识别技术帮助医生进行疾病诊断,如早期癌症检测。
- 金融领域:通过自然语言处理技术,AI可以分析市场情绪,辅助投资决策。
- 零售领域:通过用户行为分析,AI可以提供个性化推荐,提升用户体验和销售额。
3.2 技术落地的关键
要实现“卷应用”,需要关注以下几个方面:
- 数据质量:高质量的数据是成功应用的基础,需要确保数据的准确性和代表性。
- 算法优化:在有限的资源下,通过优化算法提升模型性能和效率。
- 实际需求:深刻理解用户需求和行业痛点,开发具有实际价值的应用。
四、“卷场景”:多元化应用场景的探索
4.1 行业痛点与解决方案
不同的行业有不同的痛点和需求,AI技术可以通过个性化解决方案提升行业效率。例如:
- 制造业:通过机器学习和预测分析,可以优化生产流程,减少浪费。
- 农业:通过图像识别技术,可以实现智能灌溉和病虫害检测,提升农业生产力。
- 教育:通过自然语言处理和知识图谱,可以实现个性化教育,提高学习效果。
4.2 场景化应用的优势
场景化应用不仅可以提高技术的实际效果,还可以提升用户体验和满意度。例如,智能家居中的语音助手可以根据用户的使用习惯和喜好,提供更加个性化的服务。
# 示例代码:使用GPT-4生成个性化对话
import openai# 设置OpenAI API密钥
openai.api_key = 'your-api-key'# 生成个性化对话
response = openai.Completion.create(model="text-davinci-002",prompt="用户:你好,今天天气怎么样?\nAI:",max_tokens=50
)print(response.choices[0].text.strip())
五、未来展望:技术与应用的融合
5.1 AI时代的新趋势
随着AI技术的发展,未来将出现更多融合技术与应用的创新:
- 跨领域合作:AI技术将与其他技术(如物联网、区块链等)深度融合,推动跨领域合作和创新。
- 边缘计算:通过边缘计算,可以在本地设备上运行AI模型,减少延迟和资源消耗。
- 自适应系统:未来的AI系统将更加智能和自适应,可以根据用户和环境的变化进行自我调整和优化。
5.2 为用户解决实际问题
最终,AI技术的价值在于为用户解决实际问题,提升生活质量和工作效率。例如:
- 健康管理:通过智能设备和AI算法,可以实时监测健康状况,提供个性化的健康建议和预警。
- 智能交通:通过大数据和AI分析,可以优化交通流量,减少拥堵,提高出行效率。
- 智能客服:通过自然语言处理和机器学习,可以提供24/7的智能客服服务,提高用户满意度。
# 示例代码:使用机器学习进行健康数据分析
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 加载数据集
data = pd.read_csv('health_data.csv')# 数据预处理
X = data.drop('target', axis=1)
y = data['target']# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型
model = RandomForestClassifier(n_estimators=100)
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估模型
accuracy = accuracy_score(y_test, y_pred)
print(f'模型准确率:{accuracy:.2f}')
六、AI应用案例分析
在实际应用中,AI技术已经在多个领域取得了显著成效。以下是几个具体的应用案例,展示了AI在解决实际问题方面的潜力。
6.1 医疗领域:早期疾病检测
在医疗领域,AI技术通过图像识别和数据分析,可以帮助医生进行早期疾病检测。例如,通过分析医学影像,AI可以发现早期癌症的迹象,从而提高治愈率。
import tensorflow as tf
from tensorflow.keras.preprocessing import image
import numpy as np# 加载预训练的模型
model = tf.keras.models.load_model('cancer_detection_model.h5')# 加载并预处理图像
img = image.load_img('patient_scan.jpg', target_size=(224, 224))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)# 进行预测
prediction = model.predict(img_array)
if prediction[0][0] > 0.5:print("检测结果:阳性")
else:print("检测结果:阴性")
6.2 金融领域:智能投顾
在金融领域,AI通过自然语言处理和机器学习,可以分析市场情绪和趋势,提供智能投顾服务,帮助投资者做出更明智的决策。
import yfinance as yf
from sklearn.linear_model import LinearRegression
import numpy as np# 获取股票数据
stock_data = yf.download('AAPL', start='2022-01-01', end='2023-01-01')# 特征工程
stock_data['Returns'] = stock_data['Close'].pct_change()
X = np.array(stock_data.index.map(pd.Timestamp.toordinal)).reshape(-1, 1)
y = stock_data['Returns'].fillna(0)# 训练模型
model = LinearRegression()
model.fit(X, y)# 预测未来走势
future_dates = pd.date_range(start='2023-01-02', periods=30)
X_future = np.array(future_dates.map(pd.Timestamp.toordinal)).reshape(-1, 1)
predictions = model.predict(X_future)print("未来30天的股票走势预测:")
print(predictions)
6.3 零售领域:个性化推荐
在零售领域,AI通过用户行为分析和推荐算法,可以提供个性化推荐,提升用户体验和销售额。例如,电商平台可以根据用户的浏览和购买记录,推荐相关商品。
import pandas as pd
from sklearn.neighbors import NearestNeighbors# 加载用户行为数据
data = pd.read_csv('user_behavior.csv')# 构建推荐系统
model = NearestNeighbors(n_neighbors=5, algorithm='auto')
model.fit(data)# 推荐商品
user_id = 12345
distances, indices = model.kneighbors(data.loc[user_id].values.reshape(1, -1))
recommended_items = data.iloc[indices[0]]
print("推荐的商品:")
print(recommended_items)
七、未来技术与应用的融合趋势
7.1 跨领域合作
AI技术与其他新兴技术(如物联网、区块链等)的融合将推动跨领域的合作和创新。例如,智能交通系统可以结合物联网和AI技术,通过实时数据分析,优化交通流量,减少拥堵。
import numpy as np# 模拟交通数据
traffic_data = np.random.rand(100, 5) # 假设有100个路口,每个路口有5个特征数据# 交通流量预测模型
class TrafficPredictor:def __init__(self):self.model = LinearRegression()def train(self, data):X = data[:, :-1]y = data[:, -1]self.model.fit(X, y)def predict(self, new_data):return self.model.predict(new_data)# 训练模型
predictor = TrafficPredictor()
predictor.train(traffic_data)# 预测未来交通流量
future_traffic = np.random.rand(10, 4)
predictions = predictor.predict(future_traffic)
print("未来交通流量预测:")
print(predictions)
7.2 边缘计算
边缘计算可以在本地设备上运行AI模型,减少延迟和资源消耗。例如,智能家居设备可以通过边缘计算实现语音识别和环境感知,提供更快捷的响应。
import tensorflow as tf
from tensorflow.keras.preprocessing import image
import numpy as np# 加载预训练的轻量级模型
model = tf.keras.models.load_model('edge_ai_model.h5')# 进行本地预测
def local_inference(img_path):img = image.load_img(img_path, target_size=(224, 224))img_array = image.img_to_array(img)img_array = np.expand_dims(img_array, axis=0)prediction = model.predict(img_array)return prediction# 本地语音助手示例
response = local_inference('voice_command.jpg')
print("语音助手响应:", response)
7.3 自适应系统
未来的AI系统将更加智能和自适应,可以根据用户和环境的变化进行自我调整和优化。例如,智能学习系统可以根据学生的学习进度和表现,动态调整教学内容和难度。
import numpy as np# 模拟学生的学习进度数据
learning_data = np.random.rand(100, 3) # 假设有100个学生,每个学生有3个学习进度数据# 自适应学习系统
class AdaptiveLearningSystem:def __init__(self):self.model = LinearRegression()def train(self, data):X = data[:, :-1]y = data[:, -1]self.model.fit(X, y)def adapt(self, new_data):return self.model.predict(new_data)# 训练系统
system = AdaptiveLearningSystem()
system.train(learning_data)# 动态调整教学内容
new_progress = np.random.rand(10, 2)
adjustments = system.adapt(new_progress)
print("动态调整教学内容:")
print(adjustments)
八、总结
李彦宏在2024世界人工智能大会上的发言,深刻揭示了当前AI技术发展的关键问题和未来方向。通过聚焦实际应用和多元化场景,我们可以充分发挥AI技术的潜力,解决现实问题,提升产业价值和用户体验。未来,随着技术与应用的不断融合,AI将为我们的生活和工作带来更多的便利和创新。
在技术发展的道路上,我们应牢记李彦宏的呼吁:“不要卷模型,要卷应用!”通过将技术落地,解决实际问题,我们才能真正实现AI技术的价值,推动社会的进步和发展。
欢迎点赞|关注|收藏|评论,您的肯定是我创作的动力 |
相关文章:

【AI大模型】李彦宏从“卷模型”到“卷应用”的深度解析:卷用户场景卷能给用户解决什么问题
文章目录 一、理解李彦宏的发言1.1 李彦宏的核心观点1.2 背景分析 二、技术发展:从辨别式到生成式2.1 辨别式AI技术2.2 生成式AI技术2.3 技术发展的挑战 三、“卷应用”:聚焦实际应用与价值3.1 应用为王3.2 技术落地的关键 四、“卷场景”:多…...

25秋招面试算法题 (Go版本)
文章目录 科大讯飞 0713找01不能出现太多其他 科大讯飞 0713 找01 牛牛拥有一个长度为 n 的01 串,现在他想知道,对于每个字符,在它前面的最近的不同字符的下标是多少? 输入描述 本题为多组测试数据,第一行输入一个…...

在Ubuntu 14.04上安装和保护phpMyAdmin的方法
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 简介 虽然许多用户需要像 MySQL 这样的数据库管理系统的功能,但他们可能不太习惯仅通过 MySQL 提示符与系统进行交互。 ph…...

突破与创新:Vue.js 创始人 尤雨溪 2024 年度技术前瞻
本文将深入探讨以下主题的 尤雨溪 见解:Vite 5对Vue的影响、宏、vapor模式、常见误解、新特性或功能、未来版本对Option API的支持、VitePress等。 . 2.尤大的问答环节 2.1. Vite 5如何提升Vue的性能? Vite在提高性能方面的工作通常是针对Vite本身的。然…...

LeetCode 441, 57, 79
目录 441. 排列硬币题目链接标签思路代码 57. 插入区间题目链接标签思路两个区间的情况对每个区间的处理最终的处理 代码 79. 单词搜索题目链接标签原理思路代码 优化思路代码 441. 排列硬币 题目链接 441. 排列硬币 标签 数学 二分查找 思路 由于本题所返回的 答案在区间…...

【排序 - 插入排序 和 希尔排序】
插入排序(Insertion Sort)是一种简单直观的排序算法,它的工作原理是逐步构建有序序列。在排序过程中,它将未排序的元素逐个插入到已排序的部分中,从而在每次插入时扩展已排序序列的长度。 原理介绍 插入排序的基本思…...

Java使用 MyBatis-Plus 的 OR
Java使用 MyBatis-Plus 的 OR 一、前言1. 简介2. OR 查询2.1 基础 OR 查询2.2 使用 Lambda 表达式简化 二、总结 一、前言 学习使用 MyBatis-Plus 的 OR 及高级语句是提升数据库操作效率和灵活性的关键步骤。MyBatis-Plus 是 MyBatis 的增强工具包,提供了许多便捷的…...

[Linux]CentOS软件的安装
一、Linux 软件包管理器 yum 1.Linux安装软件的方式 在linux中安装软件常用的有三种方式: 源代码安装(我们还需要进行编译运行后才可以,很麻烦) rpm安装(Linux的安装包,需要下载一些rpm包,但是…...

4000厂商默认账号密码、默认登录凭证汇总.pdf
获取方式: 链接:https://pan.baidu.com/s/1F8ho42HTQhebKURWWVW1BQ?pwdy2u5 提取码:y2u5...

RK3568笔记三十六:LED驱动开发(设备树)
若该文为原创文章,转载请注明原文出处。 记录使用设备树编写一个简单的 LED 灯驱动程序 一、编程思路 程序编写的主要内容为添加 LED 灯的设备树节点、在驱动程序中使用 of 函数获取设备节点中的 属性,编写测试应用程序。 • 首先向设备树添加 LED 设备…...

AC修炼计划(AtCoder Regular Contest 180) A~C
A - ABA and BAB A - ABA and BAB (atcoder.jp) 这道题我一开始想复杂了,一直在想怎么dp,没注意到其实是个很简单的规律题。 我们可以发现我们住需要统计一下类似ABABA这样不同字母相互交替的所有子段的长度,而每个字段的的情况有ÿ…...

云计算练习题
第一题:每周日晚上11点59分需要将/data目录打包压缩到/mnt目录下并以时间命名 #crontab -e 59 23 * * 7 /bin/tar czvf /mnt/date %F-data.tar.gz /data 59 23 * * 7 /bin/tar czvf /mnt/date %T.tar.gz /data 第二题:查找出系统中/application目录下所有…...

《战甲神兵》开发者报告:游戏崩溃问题80%发生在Intel可超频酷睿i9处理器上——酷睿i7 K系列CPU也表现出高崩溃率
在Intel持续面临第13代和第14代CPU崩溃问题的背景下,近日,《战甲神兵》(Warframe)的开发者们于7月9日披露了游戏崩溃的统计数据,并描述了诊断该问题的过程。根据开发团队的说法,一名未进行超频且使用全新PC的员工,即便…...

Postman下载及使用说明
Postman使用说明 Postman是什么? Postman是一款接口对接工具【接口测试工具】 接口(前端接口)是什么? 前端发送的请求普遍被称为接口 通常有网页的uri参数格式json/key-value请求方式post/get响应请求的格式json 接…...

什么是im即时通讯?WorkPlus im即时通讯私有化部署安全可控
IM即时通讯是Instant Messaging的缩写,指的是一种实时的、即时的电子信息交流方式,也被称为即时通讯。它通过互联网和移动通信网络,使用户能够及时交换文本消息、语音通话、视频通话、文件共享等信息。而WorkPlus im即时通讯私有化部署则提供…...

hnust 1794: 机器翻译
hnust 1794: 机器翻译 题目描述 小晨的电脑上安装了一个机器翻译软件,他经常用这个软件来翻译英语文章。 这个翻译软件的原理很简单,它只是从头到尾,依次将每个英文单词用对应的中文含义来替换。对于每个英文单词,软件会先在内存…...

AI人工智能开源大模型生态体系分析
人工智能开源大模型生态体系研究 "人工智能开源大模型生态体系研究报告v1.0"揭示,AI(A)的飞速发展依赖于三大核心:数据、算法和算力。这一理念已得到业界广泛认同,三者兼备才能推动AI的壮大发展。随着AI大模型的扩大与普及…...

ArkTS学习笔记_封装复用之@Styles装饰器
ArkTS学习笔记_封装复用之Styles装饰器 背景: 在开发中,如果每个组件的样式都需要单独设置,就会出现大量代码在进行重复样式设置,虽然可以复制粘贴,但为了代码简洁性和后续方便维护,给出的思路是ÿ…...

根据vue学习react
react的函数式组件与vue2是很像的 一、基础类似点 1、组件下拥有一个根节点,vue2是template,react是幽灵标签<> 2、vue2是{{}}以及v-model,react的绑定是{} 3、vue2编译html是v-html,react是{},并且react的jsx中…...

Hi3861 OpenHarmony嵌入式应用入门--HTTPD
httpd 是 Apache HTTP Server 的守护进程名称,Apache HTTP Server 是一种广泛使用的开源网页服务器软件。 本项目是从LwIP中抽取的HTTP服务器代码; Hi3861 SDK中已经包含了一份预编译的lwip,但没有开启HTTP服务器功能(静态库无法…...

MICS2024|少样本学习、多模态技术以及大语言模型在医学图像处理领域的研究进展|24-07-14
小罗碎碎念 本期推文主题 今天的会议很多主题都集中在大模型、多模态这两个方面,很明显,这两个方向都是目前的研究热点。 所以,我这一期推文会先简单的分析一下秦文健(中科院)和史淼晶(同济大学)…...

ConfigMap-secrets-静态pod
一.ConfigMap 1.概述 ConfigMap资源,简称CM资源,它生成的键值对数据,存储在ETCD数据库中 应用场景:主要是对应用程序的配置 pod通过env变量引入ConfigMap,或者通过数据卷挂载volume的方式引入ConfigMap资源 官方解释…...

SQL Error: 1406, SQLState: 22001
SQL错误代码1406和SQLState 22001通常表示“列数据过长”错误。这意味着尝试插入或更新列中的值,但该值的长度超过了该列允许的最大长度。 解决此问题的几个步骤: 检查列长度: 确定引起错误的列。检查数据库架构中该列允许的最大长度。 验证…...

【密码学基础】基于LWE(Learning with Errors)的全同态加密方案
学习资源: 全同态加密I:理论与基础(上海交通大学 郁昱老师) 全同态加密II:全同态加密的理论与构造(Xiang Xie老师) 现在第二代(如BGV和BFV)和第三代全同态加密方案都是基…...

Linux - 基础开发工具(yum、vim、gcc、g++、make/Makefile、git)
目录 Linux软件包管理器 - yum Linux下安装软件的方式 认识yum 查找软件包 安装软件 如何实现本地机器和云服务器之间的文件互传 卸载软件 Linux编辑器 - vim vim的基本概念 vim下各模式的切换 vim命令模式各命令汇总 vim底行模式各命令汇总 vim的简单配置 Linux编译器 - gc…...

网络安全法律框架更新:最新合规要求与企业应对策略
网络安全法律框架的最新更新 近期,中国的网络安全法律框架经历了重要的更新。2022年,《网络安全法》迎来了首次修改,这一修订主要是为了与《数据安全法》和《个人信息保护法》等新实施的法律进行衔接协调,完善法律责任制度&#x…...

数仓工具—Hive语法之正则表达式函数
正则表达式函数 之前我们介绍过like rlike regexp 这些关键字,都是和匹配有关的,今天我们介绍一下hive 的REGEXP_REPLACE 和REGEXP_EXTRACT 函数,背景是使用Hive正则表达式函数提取数字 在我的其他文章中,我们已经看到了如何使用Hive正则表达式从字符串中提取日期值。正则…...

WKCTF 2024 easy_heap
很经典的house of orange unsortedbin attack FSOP 变量覆盖 不能 free,那首先想到就是 house of orange泄露Libc基址,然后unsortedbin attack。 但是只能show(8),就不能用largebin的套路来泄露堆地址了,那怎么办呢? …...

SQL 多变关联使用子查询去重
不去重状态 select a.*,b.recon_amt from free_settlement_first aleft join free_settlement_second b on a.settlement_first_id b.settlement_first_id 有2条数据出现了重复 使用子查询去重 select a.*,b.recon_amt from free_settlement_first aleft join free_settlem…...

php表单提交并自动发送邮件给某个邮箱(示例源码下载)
只需要将以下代码内容进行复制即可用到自己的程序/API接口中: <?php if(!empty($_POST[is_post]) && $_POST[is_post]1){$url "https://www.aoksend.com/index/api/send_email";$name $_POST[name];$email $_POST[email];$subject $_POS…...