怎样对 PostgreSQL 中的慢查询进行分析和优化?
- 🍅关注博主🎗️ 带你畅游技术世界,不错过每一次成长机会!
- 📚领书:PostgreSQL 入门到精通.pdf

文章目录
- 怎样对 PostgreSQL 中的慢查询进行分析和优化?
- 一、理解慢查询的危害
- 二、找出慢查询
- (一)日志分析
- (二)使用扩展工具
 
- 三、分析慢查询
- (一)查看执行计划
- (二)分析索引使用情况
- (三)检查数据分布和表结构
 
- 四、优化慢查询
- (一)创建合适的索引
- (二)优化查询语句
- (三)调整数据库参数
- (四)分表和分区
 
- 五、优化过程中的注意事项
- (一)不要过度优化
- (二)测试和验证
- (三)持续监控
 
- 六、总结
 

怎样对 PostgreSQL 中的慢查询进行分析和优化?
在数据库的世界里,慢查询就像是路上的绊脚石,让数据处理的道路变得崎岖不平。想象一下,你正在高速公路上飞驰,突然遇到一堆减速带,那感觉肯定糟透了。对于使用 PostgreSQL 的开发者和管理员来说,学会分析和优化慢查询就是清除这些“减速带”,让数据的“跑车”能够风驰电掣。
一、理解慢查询的危害
在深入探讨如何分析和优化慢查询之前,咱们先来唠唠慢查询到底能带来哪些麻烦。打个比方,假如你经营着一家网店,每当顾客下单时,系统都要慢悠悠地处理订单信息,这不仅会让顾客等得不耐烦,甚至可能直接走人,去别家下单。同样的道理,在数据库中,如果查询响应时间过长,会严重影响应用程序的性能和用户体验。
从技术角度来看,慢查询会占用大量的系统资源,比如 CPU、内存和 I/O 带宽。这就好比一群人同时挤在一个狭窄的门口,谁也过不去,导致整个系统的运行效率低下。而且,频繁出现的慢查询还可能引发连锁反应,导致其他正常的查询也受到牵连,就像多米诺骨牌一样,一倒一大片。
二、找出慢查询
要想解决问题,首先得把问题找出来。在 PostgreSQL 中,我们可以通过多种方式来发现慢查询。
(一)日志分析
PostgreSQL 的日志就像是一个“记事本”,记录了数据库运行过程中的点点滴滴。我们可以通过配置日志参数,让它记录查询的执行时间。通常,我们可以设置一个阈值,比如超过 500 毫秒的查询就被认为是慢查询,并将其记录到日志中。
log_min_duration_statement = 500
这样,在日志中,我们就能找到那些执行时间超过设定阈值的查询语句,就像在一堆沙子中找出那些大颗粒的石头一样。
(二)使用扩展工具
除了依靠原生的日志功能,还可以借助一些扩展工具来找出慢查询。比如说 pg_stat_statements 这个扩展,它可以收集查询的执行统计信息,包括执行次数、平均执行时间、最大执行时间等等。
启用这个扩展后,我们可以通过查询相关的视图来获取慢查询的信息:
SELECT query, calls, total_time, mean_time
FROM pg_stat_statements
ORDER BY total_time DESC;
这就好比有了一个“侦探”,帮我们在数据库的“大街小巷”里寻找那些行动迟缓的“嫌疑人”。
三、分析慢查询
找到了慢查询,接下来就得像侦探破案一样,仔细分析找出问题的根源。
(一)查看执行计划
PostgreSQL 提供了一个强大的工具——执行计划(Execution Plan),它就像是一张地图,告诉我们查询语句在数据库内部是如何执行的。
我们可以使用 EXPLAIN 命令来获取查询的执行计划:
EXPLAIN SELECT * FROM your_table WHERE some_column = 'value';
执行计划中包含了很多有用的信息,比如表的扫描方式(顺序扫描还是索引扫描)、连接方式(嵌套循环连接、哈希连接还是合并连接)、预估的行数等等。
比如说,如果看到执行计划中使用了全表顺序扫描,而表中的数据量又很大,那这很可能就是导致查询慢的一个原因。因为顺序扫描就像是在一个没有目录的大图书馆里一本一本找书,效率可想而知。
(二)分析索引使用情况
索引就像是数据库的“指南针”,能帮助快速定位数据。如果查询没有使用到合适的索引,或者根本就没有索引,那查询速度肯定快不了。
我们可以通过执行计划来查看索引的使用情况。如果在执行计划中没有看到 Index Scan ,而是看到了 Seq Scan ,那就得考虑是不是缺少必要的索引,或者查询条件不适合现有的索引。
举个例子,如果有一个表 users ,其中有一个列 age 经常用于查询,但是没有为 age 列创建索引,那么当执行 SELECT * FROM users WHERE age = 25; 这样的查询时,就很可能会进行全表扫描,导致查询变慢。
(三)检查数据分布和表结构
有时候,慢查询的问题可能不在查询语句本身,而是数据的分布或者表结构不合理。
比如说,如果一个表中的数据严重倾斜,某些值出现的频率特别高,这可能会影响索引的效果。再比如,表的字段类型选择不当,导致存储空间浪费或者查询处理复杂,也会拖慢查询速度。
就好比你把所有的东西都胡乱塞进一个箱子里,找起来肯定费劲。同样,如果表结构设计得乱七八糟,数据存储没有条理,查询的时候自然也就磕磕绊绊。
四、优化慢查询
找到了问题的症结,接下来就是对症下药,对慢查询进行优化。
(一)创建合适的索引
正如前面所说,索引是提高查询速度的关键。但是,也不能盲目地创建索引,过多的索引会增加数据插入、更新和删除的开销。
创建索引时,要根据查询的频繁程度和条件来选择合适的列。一般来说,经常用于查询、连接、排序和分组的列适合创建索引。
例如,如果经常执行 SELECT * FROM orders WHERE order_id = 123; 这样的查询,那么为 order_id 列创建索引是一个不错的选择。
CREATE INDEX idx_orders_order_id ON orders (order_id);
(二)优化查询语句
有时候,只需要对查询语句进行一些小小的调整,就能带来显著的性能提升。
比如,避免使用 SELECT * ,而是明确指定需要的列。这样可以减少数据的传输量,提高查询效率。
再比如,合理使用连接(JOIN),避免不必要的子查询。子查询就像是在一个大任务中嵌套了一个小任务,增加了复杂性和执行时间。
举个例子,原本的查询是:
SELECT * FROM users WHERE age = (SELECT AVG(age) FROM users);
可以优化为:
SELECT u.* FROM users u JOIN (SELECT AVG(age) AS avg_age FROM users) a ON u.age = a.avg_age;
(三)调整数据库参数
PostgreSQL 有很多可以调整的参数,比如共享缓冲区大小、工作内存等等。根据服务器的硬件资源和负载情况,合理调整这些参数,可以提高数据库的整体性能。
但这就像是给汽车调整发动机参数一样,需要谨慎操作,否则可能会适得其反。
(四)分表和分区
当一个表的数据量非常大时,可以考虑分表或者分区。分表就是将一个大表拆分成多个小表,分区则是将表的数据按照一定的规则划分到不同的分区中。
比如说,如果有一个订单表,数据量已经达到了数百万条,我们可以按照年份或者月份对其进行分区,这样在查询特定时间段的数据时,只需要扫描相应的分区,而不是整个表。
这就好比把一个大仓库分成若干个小仓库,找东西的时候目标更明确,速度自然就快了。
五、优化过程中的注意事项
在优化慢查询的过程中,有几个“坑”需要特别注意。
(一)不要过度优化
俗话说,过犹不及。有时候,为了追求极致的性能,可能会进行一些复杂的优化操作,但这可能会导致代码的可读性和可维护性下降。而且,在实际应用中,可能并不需要那么高的性能。
所以,要根据实际情况,权衡优化的成本和收益,不要为了一点点性能提升而付出巨大的代价。
(二)测试和验证
在对查询进行优化后,一定要进行充分的测试和验证,确保优化没有引入新的问题。比如,优化后的查询在某些特殊情况下是否能正常工作,数据的准确性是否受到影响等等。
就像修好了一辆车,得开出去跑一圈,看看有没有其他毛病。
(三)持续监控
数据库的性能不是一成不变的,随着数据量的增长、业务的变化,可能会出现新的慢查询。所以,要持续监控数据库的性能,及时发现并解决问题。
这就像是定期给汽车做保养,才能保证它一直处于良好的运行状态。
六、总结
对 PostgreSQL 中的慢查询进行分析和优化是一项需要耐心和技巧的工作。就像一场马拉松,不能急于求成,要一步一个脚印,从发现问题、分析问题到解决问题,每个环节都要认真对待。

🎉相关推荐
- 🍅关注博主🎗️ 带你畅游技术世界,不错过每一次成长机会!
- 📚领书:PostgreSQL 入门到精通.pdf
- 📙PostgreSQL 中文手册
- 📘PostgreSQL 技术专栏
- 🍅CSDN社区-墨松科技

相关文章:
 
怎样对 PostgreSQL 中的慢查询进行分析和优化?
🍅关注博主🎗️ 带你畅游技术世界,不错过每一次成长机会!📚领书:PostgreSQL 入门到精通.pdf 文章目录 怎样对 PostgreSQL 中的慢查询进行分析和优化?一、理解慢查询的危害二、找出慢查询&#x…...
 
Springboot项目远程部署gitee仓库(docker+Jenkins+maven+git)
创建一个Springboot项目,勾选web将该项目创建git本地仓库,再创建远程仓库推送上去 创建TestController RestController RequestMapping("/test") public class TestController { GetMapping("/hello") public String sayHelloJe…...
 
Chromium CI/CD 之Jenkins实用指南2024- Windows节点开启SSH服务(七)
1.引言 在现代软件开发和持续集成的过程中,自动化部署和远程管理是不可或缺的关键环节。SSH(Secure Shell)协议以其强大的安全性和灵活性,成为连接和管理远程服务器的首选工具。对于使用Windows虚拟机作为Jenkins从节点的开发者而…...
阿里大数据面试题集锦及参考答案(3万字长文:持续更新)
目录 MapReduce Shuffle为什么要将数据写入环形缓冲区 MapReduce Shuffle为什么容易发生数据倾斜 Hadoop HA当一个Namenode挂掉,会有数据丢失吗 数据倾斜发生的位置 Combiner了解吗? 什么情况下不能用Combiner? Sum、Count、Count(distinct)哪些能用、哪些不能用Comb…...
 
springboot 配置 spring data redis
1、在pom.xml引入父依赖spring-boot-starter-parent,其中2.7.18是最后一版支持java8的spring <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.7.18</…...
Numpy基础用法
Numpy基础用法 numpy.all()num.sun() numpy.all() numpy 中的 all() 函数用于测试 NumPy 数组中所有元素是否都满足指定条件。它接受一个 NumPy 数组作为输入,并返回一个布尔值,指示数组中所有元素是否都满足条件。让我们通过具体的代码示例来深入探讨 n…...
设计模式--享元模式
享元模式(Flyweight Pattern)是一种结构型设计模式,它通过共享大量细粒度的对象来减少内存消耗。这个模式的核心思想是把对象的状态分为内在状态和外在状态,其中内在状态是可以共享的,而外在状态是需要独立维护的。 享…...
 
可视化剪辑,账号矩阵,视频分发,聚合私信一体化营销工具 源----代码开发部署方案
可视化剪辑: 为了实现可视化剪辑功能,可以使用流行的视频编辑软件或者开发自己的视频编辑工具。其中,通过设计用户友好的界面,用户可以简单地拖拽和放大缩小视频片段,剪辑出满足需求的视频。在开发过程中,可…...
CCF-CSP认证考试 202406-2 矩阵重塑(其二) 100分题解
更多 CSP 认证考试题目题解可以前往:CSP-CCF 认证考试真题题解 原题链接: 202406-2 矩阵重塑(其二) 时间限制: 1.0 秒 空间限制: 512 MiB 题目背景 矩阵转置操作是将矩阵的行和列交换的过程。在转置过程…...
 
初阶数据结构的实现1 顺序表和链表
顺序表和链表 1.线性表1.1顺序表1.1.1静态顺序表(不去实现)1.1.2动态顺序表1.1.2.1 定义程序目标1.1.2.2 设计程序1.1.2.3编写代码1.1.2.3测试和调试代码 1.1.2 顺序表的问题与思考 1.2链表1.2.1链表的概念及结构1.2.1.1 定义程序目标1.2.1.2 设计程序1.…...
 
破解反爬虫策略 /_guard/auto.js(一) 原理
背景 当用代码或者postman访问一个网站的时候,访问他的任何地址都会返回<script src"/_guard/auto.js"></script>,但是从浏览器中访问显示的页面是正常的,这种就是网站做了反爬虫策略。本文就是带大家来破解这种策略&…...
 
40.简易频率计(基于等精度测量法)(3)
(1)BCD8421码:十进制数字转换成BCD8421码的方法 补零:你需要显示多少位数字,就在前面补上四倍的位宽。比如你要显示一个十进制8位的数字,就在前面补上8*432个零。判断:判断补零部分显示的十进制…...
 
关于Centos停更yum无法使用的解决方案
最近在使用Centos7.9系统时候,发现yum仓库无法进行安装软件包了,官方说2024年6月30日进行停更,停更后无法提供对应的软件服务。 我在使用yum安装包的时候发现确实不能使用官方服务了: CentOS停更的影响 CentOS停止更新之后&#…...
 
插画感言:成都亚恒丰创教育科技有限公司
插画感言:笔触间的灵魂对话 在这个快节奏、高压力的时代,我们时常在寻找那些能够触动心灵、让灵魂得以片刻栖息的角落。而插画,这一融合了艺术与情感的独特形式,便如同一股清泉,缓缓流淌进每个人的心田,以…...
【算法】数组中的第K个最大元素
难度:中等 题目: 给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。 请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。 你必须设计并实现时间复杂度为 O(n) 的算法解决此问题…...
Perl 语言的特点
Perl 语言入门学习可以涵盖多个方面,包括其特点、基本语法、高级特性以及学习资源和社区支持等。以下是一个详细的入门学习指南: 一、Perl 语言的特点 文本处理能力强:Perl 提供了丰富的字符串处理函数和正则表达式的支持,非常适…...
 
NLP教程:1 词袋模型和TFIDF模型
文章目录 词袋模型TF-IDF模型词汇表模型 词袋模型 文本特征提取有两个非常重要的模型: 词集模型:单词构成的集合,集合自然每个元素都只有一个,也即词集中的每个单词都只有一个。 词袋模型:在词集的基础上如果一个单词…...
 
【开源 Mac 工具推荐之 2】洛雪音乐(lx-music-desktop):免费良心的音乐平台
旧版文章:【macOS免费软件推荐】第6期:洛雪音乐 Note:本文在旧版文章的基础上,新更新展示了一些洛雪音乐的新功能,并且描述更为详细。 简介 洛雪音乐(GitHub 名:lx-music-desktop )…...
 
AMEYA360:思瑞浦推出汽车级理想二极管ORing控制器TPS65R01Q
聚焦高性能模拟芯片和嵌入式处理器的半导体供应商思瑞浦3PEAK(股票代码:688536)发布汽车级理想二极管ORing控制器TPS65R01Q。 TPS65R01Q拥有20mV正向调节功能,降低系统损耗。快速反向关断(Typ:0.39μs),在电池反向和各种汽车电气瞬…...
 
简约的悬浮动态特效404单页源HTML码
源码介绍 简约的悬浮动态特效404单页源HTML码,页面简约美观,可以做网站错误页或者丢失页面,将下面的代码放到空白的HTML里面,然后上传到服务器里面,设置好重定向即可 效果预览 完整源码 <!DOCTYPE html> <html><head><meta charset="utf-8&q…...
 
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
 
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
 
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
 
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
 
三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...
 
如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...
Vue3中的computer和watch
computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...
