当前位置: 首页 > news >正文

二分查找(折半查找)

  • 这次不排序了,对排好序的数组做个查找吧

介绍

  • 二分查找排序英文名为BinarySort,是一种效率较高的查找方法
  • 要求线性表必须采用顺序存储结构

基本思路

  • 通过不断地将搜索范围缩小一半来找到目标元素:
    • 1、假定数组为arr,需要查找的值为target
    • 2、定义left、right 和mid三个索引。mid=(left+right)/2;
    • 3、如果中间元素正好是要查找的元素,搜索结束;
      ( 即arr[mid]==target,结束)
    • 4、如果目标元素大于中间元素,那么在数组的右半部分继续查找
      ( 即arr[mid]>target,循环或者递归右半部分)
    • 5、如果目标元素小于中间元素,那么在数组的左半部分继续查找
      ( 即arr[mid]<target,循环或者递归左半部分)
    • 6、重复以上步骤,直到找到目标元素或者搜索范围为空(找不到目标值)

代码

  • 循环方法

    public static void main(String[] args) {int[] arr = {1,10, 20, 30, 40, 50, 60, 70, 80, 90};sort(arr,60);sort(arr,45);sort(arr,1);
    }public static int sort(int[] arr,int target){int left = 0;int right = arr.length-1;while(left<=right){ // 此处=是为了当索引移动后只剩一个时,也需要比较int mid = (left+right)/2; // 放在while循环外边就成了固定值了if(arr[mid]==target){System.out.println("找到了!");return mid;}else if(arr[mid]<target){ // 目标值比中间值大,要往右边查找left = mid+1;}else{    // 目标值比中间值小,要往左边查找right = mid-1;}}System.out.println("没有该数值");return -1;
    }
    ------------输出结果--------------
    找到了【60】,位置是:6
    数值【45】不存在
    找到了【1】,位置是:0
    
  • 递归方法

    public static void main(String[] args) {int[] arr = {1,10, 20, 30, 40, 50, 60, 70, 80, 90};digui(arr,60,0,arr.length-1);digui(arr,45,0,arr.length-1);digui(arr,1,0,arr.length-1);
    }
    public static int digui(int[] arr,int target,int left,int right){if(left>right){System.out.println("不存在该数值");return -1;}int mid = (left+right)/2;if(arr[mid]==target){System.out.println("找到了!");return mid;}else if(arr[mid]>target){ // 目标值比中间值小return digui(arr,target,left,mid-1);}else{return digui(arr,target,mid+1,right);}
    }
    ------------输出结果--------------
    找到了【60】,位置是:6
    数值【45】不存在
    找到了【1】,位置是:0
    

老规矩,来个流程图

  • 希望这三张图能帮忙大家理解为什么left<=right
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

时间复杂度

  • 最好情况是O(1),即一下就找到了
  • 平均是O(logN)

相关文章:

二分查找(折半查找)

这次不排序了&#xff0c;对排好序的数组做个查找吧 介绍 二分查找排序英文名为BinarySort&#xff0c;是一种效率较高的查找方法要求线性表必须采用顺序存储结构 基本思路 通过不断地将搜索范围缩小一半来找到目标元素&#xff1a; 1、假定数组为arr&#xff0c;需要查找的…...

arcgis紧凑型切片缓存(解决大范围切片,文件数量大的问题)

ArcGIS 切片缓存的紧凑型存储格式是一种优化的存储方式&#xff0c;用于提高切片缓存的存储效率和访问速度。紧凑型存储格式将多个切片文件合并为一个单一的 .bundle 文件&#xff0c;从而减少文件系统的开销和切片的加载时间。这类格式已经应用很久了&#xff0c;我记得2013我…...

ESP32CAM人工智能教学15

ESP32CAM人工智能教学15 Flask服务器TCP连接 小智利用Flask在计算机中创建一个虚拟的网页服务器服务器&#xff0c;让ESP32Cam通过WiFi连接&#xff0c;把摄像头拍摄到的图片发送到电脑中&#xff0c;并在电脑中保存成图片文件。 Flask是用Python编写的网页服务程序WebServer。…...

Pandas 33个冷知识 0721

Pandas 33个冷知识 从Excel读取数据: 使用 pd.read_excel(file.xlsx) 来读取Excel文件。 写入Excel: 使用 df.to_excel(file.xlsx, indexFalse) 将DataFrame写入Excel文件。 创建日期索引: 使用 df.set_index(pd.to_datetime(df[date])) 创建日期索引。 向后填充缺失值: 使用…...

C++ map和set的使用

目录 0.前言 1.关联式容器 2.键值对 3.树形结构的关联式容器 3.1树形结构的特点 3.2树形结构在关联式容器中的应用 4.set 4.1概念与性质 4.2使用 5.multiset 5.1概念与性质 5.2使用 6.map 6.1概念与性质 6.2使用 7.multimap 7.1概念与性质 7.2使用 8.小结 &a…...

yarn的安装和配置以及更新总结,npm的对照使用差异

1. Yarn简介 Yarn 是一个由 Facebook 开发的现代 JavaScript 包管理器&#xff0c;旨在提供更快、更安全、更可靠的包管理体验。 1.1 什么是Yarn Yarn 是一个快速、可靠和安全的 JavaScript 包管理器&#xff0c;它通过并行化操作和智能缓存机制&#xff0c;显著提升了依赖安…...

【Git命令】git rebase之合并提交记录

使用场景 在本地提交了两个commit&#xff0c;但是发现根本没有没必要分为两次&#xff0c;需要想办法把两次提交合并成一个提交&#xff1b;这个时候可以使用如下命令启动交互式变基会话&#xff1a; git rebase -i HEAD~N这里 N 是你想要重新调整的最近的提交数。 如下在本地…...

为什么品牌需要做 IP 形象?

品牌做IP形象的原因有多方面&#xff0c;这些原因共同构成了IP形象在品牌建设中的重要性和价值&#xff0c;主要原因有以下几个方面&#xff1a; 增强品牌识别度与记忆点&#xff1a; IP形象作为品牌的视觉符号&#xff0c;具有独特性和辨识性&#xff0c;能够在消费者心中留…...

Kubernetes 1.24 版弃用 Dockershim 后如何迁移到 containerd 和 CRI-O

在本系列的上一篇文章中&#xff0c;我们讨论了什么是 CRI 和 OCI&#xff0c;Docker、containerd、CRI-O 之间的区别以及它们的架构等。最近&#xff0c;我们得知 Docker 即将从 kubernetes 中弃用&#xff01;&#xff08;查看 kubernetes 官方的这篇文章&#xff09;那么让我…...

70. 爬楼梯【 力扣(LeetCode) 】

一、题目描述 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 二、测试用例 示例 1&#xff1a; 输入&#xff1a;n 2 输出&#xff1a;2 解释&#xff1a;有两种方法可以爬到楼顶。 1. 1 阶…...

R语言优雅的把数据基线表(表一)导出到word

基线表&#xff08;Baseline Table&#xff09;是医学研究中常用的一种数据表格&#xff0c;用于在研究开始时呈现参与者的初始特征和状态。这些特征通常包括人口统计学数据、健康状况和疾病史、临床指标、实验室检测、生活方式、社会经济等。 本人在既往文章《scitb包1.6版本发…...

XMl基本操作

引言 使⽤Mybatis的注解⽅式&#xff0c;主要是来完成⼀些简单的增删改查功能. 如果需要实现复杂的SQL功能&#xff0c;建议使⽤XML来配置映射语句&#xff0c;也就是将SQL语句写在XML配置⽂件中. 之前&#xff0c;我们学习了&#xff0c;用注解的方式来实现MyBatis 接下来我们…...

Linux——Shell脚本和Nginx反向代理服务器

1. Linux中的shell脚本【了解】 1.1 什么是shell Shell是一个用C语言编写的程序&#xff0c;它是用户使用Linux的桥梁 Shell 既是一种命令语言&#xff0c;有是一种程序设计语言 Shell是指一种应用程序&#xff0c;这个应用程序提供了一个界面&#xff0c;用户通过这个界面访问…...

pyspark使用 graphframes创建和查询图的方法

1、安装graphframes的步骤 1.1 查看 spark 和 scala版本 在终端输入&#xff1a; spark-shell --version 查看spark 和scala版本 1.2 在maven库中下载对应版本的graphframes https://mvnrepository.com/artifact/graphframes/graphframes 我这里需要的是spark 2.4 scala 2.…...

【web】-flask-简单的计算题(不简单)

打开页面是这样的 初步思路&#xff0c;打开F12&#xff0c;查看头&#xff0c;都发现了这个表达式的base64加密字符串。编写脚本提交答案&#xff0c;发现不对&#xff1b; 无奈点开source发现源代码&#xff0c;是flask,初始化表达式&#xff0c;获取提交的表达式&#xff0…...

Apache Sqoop

Apache Sqoop是一个开源工具&#xff0c;用于在Apache Hadoop和关系型数据库&#xff08;如MySQL、Oracle、PostgreSQL等&#xff09;之间进行数据的批量传输。其主要功能包括&#xff1a; 1. 数据导入&#xff1a;从关系型数据库&#xff08;如MySQL、Oracle等&#xff09;中将…...

【Python】TensorFlow介绍与实战

TensorFlow介绍与使用 1. 前言 在人工智能领域的快速发展中&#xff0c;深度学习框架的选择至关重要。TensorFlow 以其灵活性和强大的社区支持&#xff0c;成为了许多研究者和开发者的首选。本文将进一步扩展对 TensorFlow 的介绍&#xff0c;包括其优势、应用场景以及在最新…...

第100+16步 ChatGPT学习:R实现Xgboost分类

基于R 4.2.2版本演示 一、写在前面 有不少大佬问做机器学习分类能不能用R语言&#xff0c;不想学Python咯。 答曰&#xff1a;可&#xff01;用GPT或者Kimi转一下就得了呗。 加上最近也没啥内容写了&#xff0c;就帮各位搬运一下吧。 二、R代码实现Xgboost分类 &#xff08…...

【操作系统】定时器(Timer)的实现

这里写目录标题 定时器一、定时器是什么二、标准库中的定时器三、实现定时器 定时器 一、定时器是什么 定时器也是软件开发中的⼀个重要组件.类似于⼀个"闹钟".达到⼀个设定的时间之后,就执行某个指定 好的代码. 定时器是⼀种实际开发中⾮常常用的组件. ⽐如⽹络通…...

鸿蒙Navigation路由能力汇总

基本使用步骤&#xff1a; 1、新增配置文件router_map&#xff1a; 2、在moudle.json5中添加刚才新增的router_map配置&#xff1a; 3、使用方法&#xff1a; 属性汇总&#xff1a; https://developer.huawei.com/consumer/cn/doc/harmonyos-references/ts-basic-compone…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

群晖NAS如何在虚拟机创建飞牛NAS

套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器

拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件&#xff1a; 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...