【人工智能】深度剖析AI伦理:强化隐私防线,推动算法公平性的核心议题
文章目录
- 🍊1 人工智能兴起背后的伦理及道德风险
- 1.1 算法偏见与歧视
- 1.2 数据隐私侵权
- 1.3 透明度受限
- 1.4 决策失衡
- 1.5 AI生成内容的危险性
- 🍊2 建构AIGC伦理观:实现人机共创的永续提升
- 2.1 技术手段与伦理预防
- 2.2 即时警告与紧急关停措施
- 2.3 法律视角下的AI伦理发展与规范
- 2.3.1 国内出台的相关AI法律法规
- 2.3.2 国外出台的相关AI法律法规
- 🍊3 企业责任与AI伦理学家:应对AI伦理问题的新战略
- 3.1 AI人才战略
- 3.2 人工智能伦理学家
- 3.2 企业的伦理和合规性
🍊1 人工智能兴起背后的伦理及道德风险
随着人工智能(AI)技术的快速发展,特别是通用人工智能(AGI)的崛起,组织和人力资源管理迎来了前所未有的机遇。然而,这些技术的应用背后也潜藏着一系列伦理和道德风险,包括偏见与歧视、数据隐私侵权、透明度受限、决策失衡等。组织在享受技术红利的同时,必须警惕这些潜在风险,并采取有效措施加以应对。
-
《计算机行业周报:ChatGPT发布有望引发人工智能新浪潮》中这样写道:
-
《人工智能行业专题:AIGC投资框架-西南证券》中这样写道::
1.1 算法偏见与歧视
AGI算法的偏见与歧视问题主要源于其训练数据的不完备性和偏向性。斯坦福大学2023年发布的研究报告显示,过去十年间,全球范围内由AI引发的事故和争议的事件数量增长了26倍。在人员招聘环节,针对性别、种族和年龄的偏见与歧视事件层出不穷。这些偏见不仅破坏了招聘公平性,还可能导致组织错失优秀人才。因此,企业有必要加强对技术背后训练数据和算法的审查与监控,并及时采取纠正措施,打造更为公平的技术应用环境。
1.2 数据隐私侵权
为了充分发挥AGI对组织管理的提质增效作用,组织会收集和处理大量员工数据,包括个人信息、偏好、行为习惯和健康等敏感信息。然而,不正确或滥用这些数据可能导致数据隐私权受损。例如,未经授权的数据共享和不当的数据存储方式都会带来隐私风险。因此,组织亟需建立严格的数据安全保护措施,确保数据处理方式的合规性和道德性,以维护员工的隐私权和信任。
1.3 透明度受限
AGI决策机制的复杂性和黑盒特征使得其推理和决策逻辑难以被外界理解。员工可能会因无法理解AGI决策而对其公平性和合理性提出质疑。同时,AGI系统的复杂性和自主性也可能导致责任划分的模糊性。当AGI系统出现错误、失控或伦理问题时,追溯责任将变得困难重重。组织需要增加AGI系统的透明度,建立清晰的责任划分机制,确保在出现问题时能够快速明确责任方并采取有效的补救措施。
1.4 决策失衡
AGI系统在运行过程中不可避免地会遇到道德性抉择和伦理困境。例如,如何在决策中权衡个人利益和集体利益、处理道德冲突等问题,都是AGI系统面临的挑战。组织需要建立适当的伦理框架和指导原则,确保AGI系统在决策过程中遵循道德标准。为此,组织应为员工提供相应的培训和支持,引导其在工作过程中探索人类经验和机器数据决策之间的平衡,避免陷入忽视数据或过于依赖AGI系统的决策失衡风险。
1.5 AI生成内容的危险性
一个典型案例是2016年微软发布的Tay。Tay是一个通过推特学习社会信息并与他人互动的AI。然而,仅仅一天后,Tay开始发表种族歧视等偏激言论。微软随后暂时关闭了Tay的账号。这些言论显然是与网络上某些具有偏激言论的人互动后,被刻意教导出来的。因为微软当时没有让Tay理解哪些言论是不适当的。
🍊2 建构AIGC伦理观:实现人机共创的永续提升
在此背景下,AIGC的发展须警惕盲目研发,应构建AIGC模式的伦理观,鼓励人作为创意主体的核心角色与伦理赋能的人机创新力永续提升。
一方面,AIGC的发展需要文化科技伦理的匡正,明确人与社会、人与机器的社会关系,建立新的AI文化科技伦理秩序。
另一方面,学习与理解心智的计算架构,赋予AIGC正确的责任观和价值观,明确AIGC算法的设计者、生产者、使用者各类主体的道德责任和版权关系。
同时,我们也应关注AI技术发展中可能带来的伦理和社会问题。例如:
- 如何防止AI助手过度筛选信息,导致信息茧房现象?
- 如何确保AI技术在传播过程中不受偏见和歧视的影响?
- 如何平衡人工智能的应用与个人隐私保护?
这些问题都需要广泛的讨论和深入的研究,以确保AI技术的可持续和健康发展。
2.1 技术手段与伦理预防
目前,许多企业正在运用一些技术手段来避免类似事件的发生,如改善数据集、增加限制性条件、微调模型等,使AI减少接触不良信息。然而,依然难以根绝有人刻意诱导AI。
比如,最近流行的ChatGPT就曾被诱导写出详细的毁灭人类计划书,后来发现是一位工程师故意为之。
2.2 即时警告与紧急关停措施
除了预防技术伦理问题,在使用时的及时警告及紧急关停措施同样重要且必要。AIGC应该内置生成内容的检测机制,确保其不被用于危害社会。一旦发现可疑举动,AI应能够迅速反应,暂停服务,并发出警告,甚至自动报警。这不仅依赖于技术的发展,相关的法律法规同样必不可少。AIGC技术伦理问题需要社会各界的共同努力来解决。
2.3 法律视角下的AI伦理发展与规范
-
隐私保护问题:
- 随着AIGC技术的发展,个人隐私保护面临新的挑战。需要制定严格的数据保护措施,确保用户隐私不被滥用。
-
数据安全问题:
- AIGC技术依赖大量数据,这些数据的安全性至关重要。需要建立完善的数据安全管理机制,防止数据泄露和滥用。
-
版权问题:
- AIGC生成的内容可能涉及版权问题,需要明确内容创作者、生成工具和平台之间的版权归属和责任。
通过法律和政策的规范,可以有效地引导AIGC技术的健康发展,保障相关利益主体的合法权益,并推动产业的可持续发展。
- 《【中国信通院】人工智能生成内容(AIGC)白皮书》中这样写道:
2.3.1 国内出台的相关AI法律法规
为促进生成式人工智能技术的健康发展和规范应用,2023年4月11日,国家网信办起草《生成式人工智能服务管理办法(征求意见稿)》并公开征求意见。该办法涉及生成式AI技术、生成内容、主体责任、数据源和数据处理等方面,对生成式人工智能服务进行了框架性规范。这体现了我国对规范化发展AIGC技术与产业的重视。
从法律的角度出发,AIGC作为全新的内容生产模式,将带来显著的隐私保护问题、数据安全问题和版权问题。
生成式人工智能服务管理办法
生成式人工智能服务管理办法
2.3.2 国外出台的相关AI法律法规
近年来,美国和欧盟相继颁布了关于人工智能的制度,对未来的AIGC发展进行了框定。例如,欧盟提出了AI伦理的五项原则,即:
- 福祉原则:向善
- 不作恶原则:无害
- 自治原则:保护人类能动性
- 公正原则:确保公平
- 可解释性原则:透明运行
这些原则特别强调“向善”,至少要做到无害、不作恶。从文化可持续的视角来看,自治原则尤为重要,即保护人类能动性的原则。我们使用AIGC模式确实可以提高效率、降低成本,但关键是要保证人作为主体的创意能力和创新能力,实现人的主体能动性不断跃迁,而不是让机器越来越聪明,而人变得越来越刻板。保护人的能动性是我们使用AIGC的一个非常重要的标准。
此外,欧盟AI伦理的技术性方法提到了五项内容,即:
- 将伦理和法律纳入设计
- 设立可信AI的架构
- 测试和验证(稳健性)
- 可追溯、可审计(决策)
- 可解释性(可信系统)
这些措施旨在确保AI系统在运行过程中遵循伦理和法律标准,保障其决策过程的透明和可信。
通过这些原则和技术性方法的结合,AI的发展不仅能够实现技术的进步,还能确保其在伦理和法律框架内健康、有序地发展。这对于保护人类的创意和创新能力,促进社会的可持续发展至关重要。
🍊3 企业责任与AI伦理学家:应对AI伦理问题的新战略
- 《【中国信通院】人工智能生成内容(AIGC)白皮书》中这样写道:
3.1 AI人才战略
企业已经建立了招募、获取和保留AI人才的战略,并根据市场或业务需求不断更新发展。他们制定了AI人才路线图,用于招聘各种与AI相关的角色,而不仅仅是机器学习工程师。例如,行为科学家、社会科学家和伦理学家等专业人才也被纳入招聘计划中。
领军企业制定了积极主动的AI人才战略,力求始终走在行业趋势的最前沿。除了招聘,他们还会与专业公司合作,甚至采取并购行动,以填补关键岗位空缺,如数据科学家、行为科学家、社会科学家和伦理学家等。此外,企业制定了多元化、多学科的员工协作计划,确保企业的数据科学创新能力,从而创造最大价值。
3.2 人工智能伦理学家
人工智能伦理学家是一种新兴职业,他们研究人工智能技术的伦理和社会问题,确保AI技术的合法、公正、透明和人性化。伦理学家在以下方面发挥关键作用:
- 合法性:确保AI技术的开发和应用符合现行法律法规。
- 公正性:防止AI技术在应用过程中产生偏见和歧视,保障公平性。
- 透明性:提高AI决策过程的透明度,让用户理解和信任AI系统。
- 人性化:确保AI技术的发展和应用符合人类价值观和道德标准。
3.2 企业的伦理和合规性
企业在发展AI技术时,必须考虑其伦理和合规性问题,确保AI技术符合人类价值观和道德标准,并遵守相关法规和标准。这可以通过以下方式实现:
- 符合伦理和合规性要求的AI技术和算法:开发和使用符合伦理和合规性要求的AI技术和算法,避免对社会产生负面影响。
- 审查和监管:对AI技术进行严格的审查和监管,确保其在应用过程中不偏离伦理和法律的轨道。
通过建立完善的AI人才战略,特别是引入人工智能伦理学家,企业可以有效应对AI技术带来的伦理问题,保障AI技术的健康发展,为社会创造最大价值。
public class Main { public static void main(String[] args) { System.out.println("易编橙🍊:帮助编程小伙伴少走弯路!"); }
}
相关文章:

【人工智能】深度剖析AI伦理:强化隐私防线,推动算法公平性的核心议题
文章目录 🍊1 人工智能兴起背后的伦理及道德风险1.1 算法偏见与歧视1.2 数据隐私侵权1.3 透明度受限1.4 决策失衡1.5 AI生成内容的危险性 🍊2 建构AIGC伦理观:实现人机共创的永续提升2.1 技术手段与伦理预防2.2 即时警告与紧急关停措施2.3 法…...

如何解决微服务下引起的 分布式事务问题
一、什么是分布式事务? 虽然叫分布式事务,但不是一定是分布式部署的服务之间才会产生分布式事务。不是在同一个服务或同一个数据库架构下,产生的事务,也就是分布式事务。 跨数据源的分布式事务 跨服务的分布式事务 二、解决方…...

牛客周赛50轮+cf955+abc363
D-小红的因式分解_牛客周赛 Round 50 (nowcoder.com) 思路: 巨蠢的题目,ax^2bxca1*a2*x^2(b1*a2b2*a1)xb1*b2,即: aa1*a2,ba1*b2a2*b1,cb1*b2 数据范围很小,直接暴力枚举吧(注意条件) 代码…...

【MySQL】:对库和表的基本操作方法
数据库使用的介绍 什么是SQL 学习数据库的使用——>基于 SQL编程语言 来对数据库进行操作 重点表述的是“需求”,期望得到什么结果。(至于结果是如何得到的,并不关键,都是数据库服务器在背后做好了) 重点表述的是…...
Library not found for -lstdc++.6.0.9
解决方案一 由于项目已经很多年了,前段时间更新了Xcode发现编译报错lstdc这个库很早以前就被舍弃了,但是一个项目的维护都随着解决bug堆砌出来的,这也导致了我们的项目走上了这条路。 比如 Library not found for -lstdc.6.0.9 报的错&#x…...

防火墙之双机热备篇
为什么要在防火墙上配置双机热备技术呢? 相信大家都知道,为了提高可靠性,避免单点故障 肯定有聪明的小伙伴会想到那为什么不直接多配置两台防火墙,然后再将他们进行线路冗余,不就完成备份了吗? 答案是不…...
终端里面ifconfig命令无法运行
在 Ubuntu 以及基于 Debian 的系统中,ifconfig 命令可能不会默认安装,因为自 Ubuntu 17.10 版本开始,系统默认使用 ip 命令作为网络配置的主要工具,而 ifconfig 命令则来自 net-tools 包,该包不再作为标准工具被包含在…...
掌握Python中的文件序列化:Json和Pickle模块解析
Python 文件操作与管理:Open函数、Json与Pickle、Os模块 在Python中,文件是一个重要的数据处理对象。无论是读取数据、保存数据还是进行数据处理,文件操作都是Python编程中不可或缺的一部分。本文将详细介绍Python中文件操作的几种常用方法&…...

WordPress 6.6 “Dorsey多尔西”发布
WordPress 6.6 “Dorsey多尔西”已经发布,它以传奇的美国大乐队领袖 Tommy Dorsey 名字命名。Dorsey 以其音调流畅的长号和作品而闻名,他的音乐以其情感深度和充满活力的能量吸引了观众。 当您探索 WordPress 6.6 的新功能和增强功能时,让您的…...

核函数支持向量机(Kernel SVM)
核函数支持向量机(Kernel SVM)是一种非常强大的分类器,能够在非线性数据集上实现良好的分类效果。以下是关于核函数支持向量机的详细数学模型理论知识推导、实施步骤与参数解读,以及两个多维数据实例(一个未优化模型&a…...

二分查找(折半查找)
这次不排序了,对排好序的数组做个查找吧 介绍 二分查找排序英文名为BinarySort,是一种效率较高的查找方法要求线性表必须采用顺序存储结构 基本思路 通过不断地将搜索范围缩小一半来找到目标元素: 1、假定数组为arr,需要查找的…...
arcgis紧凑型切片缓存(解决大范围切片,文件数量大的问题)
ArcGIS 切片缓存的紧凑型存储格式是一种优化的存储方式,用于提高切片缓存的存储效率和访问速度。紧凑型存储格式将多个切片文件合并为一个单一的 .bundle 文件,从而减少文件系统的开销和切片的加载时间。这类格式已经应用很久了,我记得2013我…...

ESP32CAM人工智能教学15
ESP32CAM人工智能教学15 Flask服务器TCP连接 小智利用Flask在计算机中创建一个虚拟的网页服务器服务器,让ESP32Cam通过WiFi连接,把摄像头拍摄到的图片发送到电脑中,并在电脑中保存成图片文件。 Flask是用Python编写的网页服务程序WebServer。…...
Pandas 33个冷知识 0721
Pandas 33个冷知识 从Excel读取数据: 使用 pd.read_excel(file.xlsx) 来读取Excel文件。 写入Excel: 使用 df.to_excel(file.xlsx, indexFalse) 将DataFrame写入Excel文件。 创建日期索引: 使用 df.set_index(pd.to_datetime(df[date])) 创建日期索引。 向后填充缺失值: 使用…...

C++ map和set的使用
目录 0.前言 1.关联式容器 2.键值对 3.树形结构的关联式容器 3.1树形结构的特点 3.2树形结构在关联式容器中的应用 4.set 4.1概念与性质 4.2使用 5.multiset 5.1概念与性质 5.2使用 6.map 6.1概念与性质 6.2使用 7.multimap 7.1概念与性质 7.2使用 8.小结 &a…...
yarn的安装和配置以及更新总结,npm的对照使用差异
1. Yarn简介 Yarn 是一个由 Facebook 开发的现代 JavaScript 包管理器,旨在提供更快、更安全、更可靠的包管理体验。 1.1 什么是Yarn Yarn 是一个快速、可靠和安全的 JavaScript 包管理器,它通过并行化操作和智能缓存机制,显著提升了依赖安…...

【Git命令】git rebase之合并提交记录
使用场景 在本地提交了两个commit,但是发现根本没有没必要分为两次,需要想办法把两次提交合并成一个提交;这个时候可以使用如下命令启动交互式变基会话: git rebase -i HEAD~N这里 N 是你想要重新调整的最近的提交数。 如下在本地…...

为什么品牌需要做 IP 形象?
品牌做IP形象的原因有多方面,这些原因共同构成了IP形象在品牌建设中的重要性和价值,主要原因有以下几个方面: 增强品牌识别度与记忆点: IP形象作为品牌的视觉符号,具有独特性和辨识性,能够在消费者心中留…...

Kubernetes 1.24 版弃用 Dockershim 后如何迁移到 containerd 和 CRI-O
在本系列的上一篇文章中,我们讨论了什么是 CRI 和 OCI,Docker、containerd、CRI-O 之间的区别以及它们的架构等。最近,我们得知 Docker 即将从 kubernetes 中弃用!(查看 kubernetes 官方的这篇文章)那么让我…...
70. 爬楼梯【 力扣(LeetCode) 】
一、题目描述 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 二、测试用例 示例 1: 输入:n 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...

从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...
django blank 与 null的区别
1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是,要注意以下几点: Django的表单验证与null无关:null参数控制的是数据库层面字段是否可以为NULL,而blank参数控制的是Django表单验证时字…...

在 Spring Boot 中使用 JSP
jsp? 好多年没用了。重新整一下 还费了点时间,记录一下。 项目结构: pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...