当前位置: 首页 > news >正文

【LeetCode】day15:110 - 平衡二叉树, 257 - 二叉树的所有路径, 404 - 左叶子之和, 222 - 完全二叉树的节点个数

LeetCode 代码随想录跟练 Day15

  • 110.平衡二叉树
  • 257.二叉树的所有路径
  • 404.左叶子之和
  • 222.完全二叉树的节点个数

110.平衡二叉树

题目描述:

给定一个二叉树,判断它是否是 平衡二叉树

平衡二叉树的定义是,对于树中的每个节点,其左右子树的高度差不超过1。思路使用递归,对比左子树和右子树的高度差是否超过1,若超过1则当前节点返回-1作为标示,否则返回当前节点的最大深度。代码如下:

class Solution {
private:int traverse(TreeNode* root) {if (root == nullptr) return 0;int leftHeight = traverse(root->left);int rightHeight = traverse(root->right);if (leftHeight == -1 || rightHeight == -1) {return -1;}if (leftHeight - rightHeight > 1 || leftHeight - rightHeight < -1) {return -1;}return max(leftHeight, rightHeight) + 1;}public:bool isBalanced(TreeNode* root) {int height = traverse(root);if (height == -1) return false;return true;}
};

257.二叉树的所有路径

题目描述:

给你一个二叉树的根节点 root ,按 任意顺序 ,返回所有从根节点到叶子节点的路径。
叶子节点 是指没有子节点的节点。

主要思路为对树进行遍历并将遍历时的当前路径记录,并在到达叶子节点后将当前路径添加到结果中。同时在遍历过程中需要对路径的状态实时进行回溯,比如从当前节点退出,上一个节点的路径中就不应再保留当前节点的信息。这里使用字符串值传递方式,可以非显式的实现回溯。代码如下:

class Solution {
private:void traverse(TreeNode* root, string path, vector<string>& paths) {if (root == nullptr) return;if (!path.empty()) path += "->";path += to_string(root->val);if (!root->left && !root->right) {paths.push_back(path);return;}traverse(root->left, path, paths);traverse(root->right, path, paths);}public:vector<string> binaryTreePaths(TreeNode* root) {vector<string> res;if (root == nullptr) return res;traverse(root, "", res);return res;}
};

另外使用迭代法进行遍历时,原理相同,在push节点进入记录节点的stack时同时将当前路径同时push进入记录路径的stack中,这样在每次循环获取当前节点时获取到的路径是对应的。注意在分别对左右节点的路径修改时,由于存在需要在处理前一个之后继续处理后一个的情况(左右节点都不为nullptr),所以不能修改path变量而是应该通过临时变量记录路径并入栈。代码如下:

class Solution {
public:vector<string> binaryTreePaths(TreeNode* root) {vector<string> res;if (root == nullptr) return res;stack<TreeNode*> nodeStk;stack<string> pathStk;nodeStk.push(root);pathStk.push(to_string(root->val));while (!nodeStk.empty()) {TreeNode* cur = nodeStk.top(); nodeStk.pop();string path = pathStk.top(); pathStk.pop();if (!cur->left && !cur->right) {res.push_back(path);continue;}if (cur->left) {nodeStk.push(cur->left);pathStk.push(path + "->" + to_string(cur->left->val));}if (cur->right) {nodeStk.push(cur->right);pathStk.push(path + "->" + to_string(cur->right->val));}}return res;}
};

404.左叶子之和

题目描述:

给定二叉树的根节点 root ,返回所有左叶子之和。
示例 1:
在这里插入图片描述
输入: root = [3,9,20,null,null,15,7]
输出: 24
解释: 在这个二叉树中,有两个左叶子,分别是 9 和 15,所以返回 24
示例 2:
输入: root = [1]
输出: 0

在遍历时使用isLeft的bool变量标示当前节点是否是上一个状态的左节点,在确认叶子节点值时同时需要确保该bool变量为true,其余均为遍历框架。代码如下:

class Solution {
private:int traverse(TreeNode* root, bool isLeft) {if (root == nullptr) return 0;if (!root->left && !root->right && isLeft) {return root->val;}int left = traverse(root->left, true);int right = traverse(root->right, false);return left + right;}public:int sumOfLeftLeaves(TreeNode* root) {return traverse(root, false);}
};

同理可以使用迭代法,通过确认左节点的方式:若左节点不为nullptr且为叶子节点,则记录结果,除此之外的所有都不算左叶子。代码如下:

class Solution {
public:int sumOfLeftLeaves(TreeNode* root) {if (root == nullptr) return 0;stack<TreeNode*> stk;stk.push(root);int res = 0;while (!stk.empty()) {TreeNode* cur = stk.top(); stk.pop();// 若左节点不为nullptr且为叶子节点if (cur->left && !cur->left->left && !cur->left->right) {res += cur->left->val;}if (cur->left) stk.push(cur->left);if (cur->right) stk.push(cur->right);}return res;}
};

222.完全二叉树的节点个数

题目描述:

给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。
完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1 1 1~ 2 h 2^h 2h 个节点。
示例 1:
在这里插入图片描述
输入:root = [1,2,3,4,5,6]
输出:6
示例 2:
输入:root = []
输出:0
示例 3:
输入:root = [1]
输出:1

最简单的二叉树遍历计算节点数,这里使用层序遍历实现:

class Solution {
public:int countNodes(TreeNode* root) {if (root == nullptr) return 0;queue<TreeNode*> q;int res = 0;q.push(root);while (!q.empty()) {int size = q.size();res += size;while (size--) {TreeNode* cur = q.front(); q.pop();if (cur->left) q.push(cur->left);if (cur->right) q.push(cur->right);}}return res;}
};

由于题中所给为完全二叉树,可以根据其特性进行优化:完全二叉树的高度可以通过一直向左直到叶子节点确定、完全二叉树的节点树可以通过比较左右子树的高度来判断。
若左子树高度等于右子树,根据完全二叉树的性质可知左子树为满二叉树(完全二叉树的叶子节点从最左边开始,右子树高度相同则表示左边排满了);若高度不同相反则表示左子树不满,而右子树一定是高度小一行的满二叉树。代码如下:

class Solution {
private:int getHeight(TreeNode* node) {int res = 0;while (node) {++res;node = node->left;}return res;}public:int countNodes(TreeNode* root) {if (root == nullptr) return 0;int leftHeight = getHeight(root->left);int rightHeight = getHeight(root->right);if (leftHeight == rightHeight) {return (1 << leftHeight) + countNodes(root->right);} else {return (1 << rightHeight) + countNodes(root->left);}}
};

相关文章:

【LeetCode】day15:110 - 平衡二叉树, 257 - 二叉树的所有路径, 404 - 左叶子之和, 222 - 完全二叉树的节点个数

LeetCode 代码随想录跟练 Day15 110.平衡二叉树257.二叉树的所有路径404.左叶子之和222.完全二叉树的节点个数 110.平衡二叉树 题目描述&#xff1a; 给定一个二叉树&#xff0c;判断它是否是 平衡二叉树 平衡二叉树的定义是&#xff0c;对于树中的每个节点&#xff0c;其左右…...

【网络安全的神秘世界】Error:Archives directory /var/cache/apt/archives/partial is missing.

&#x1f31d;博客主页&#xff1a;泥菩萨 &#x1f496;专栏&#xff1a;Linux探索之旅 | 网络安全的神秘世界 | 专接本 | 每天学会一个渗透测试工具 ✨问题描述 在kali中想要安装beef-xss软件包时&#xff0c;发生如下报错&#xff1a; Error: Archives directory /var/cac…...

网络编程中的TCP和UDP

什么是TCP协议 TCP( Transmission control protocol )即传输控制协议&#xff0c;是一种面向连接、可靠的数据传输协议&#xff0c;它是为了在不可靠的互联网上提供可靠的端到端字节流而专门设计的一个传输协议。 面向连接 &#xff1a;数据传输之前客户端和服务器端必须建立连…...

基于python的时空地理加权回归(GTWR)模型

一、时空地理加权回归&#xff08;GTWR&#xff09;模型 时空地理加权回归&#xff08;GTWR&#xff09;模型是由美国科罗拉多州立大学的Andy Liaw、Stanley A. Fiel和Michael E. Bock于2008年提出的一种高级空间统计分析方法。它是在传统地理加权回归&#xff08;GWR&#xf…...

什么是单例模式,有哪些应用?

目录 一、定义 二、应用场景 三、6种实现方式 1、懒汉式&#xff0c;线程不安全。 2、懒汉式&#xff0c;线程安全 3、双检锁/双重校验锁&#xff08;DCL&#xff0c;即 double-checked locking&#xff09; 4、静态内部类方式-------只适用于静态域 5、饿汉式 6、枚举…...

adb命令操作手机各种开关

打开iqoo手机热点设置 adb shell am start -n com.android.settings/com.android.settings.Settings$\VivoTetherSettingsActivity蓝牙模块 检查蓝牙状态的ADB命令 检查蓝牙开关状态 adb shell settings get global bluetooth_on开启和关闭蓝牙 使用Intent操作蓝牙&#xf…...

【分布式存储系统HDFS】架构和使用

分布式存储系统HDFS&#xff1a;架构和使用 目录 引言HDFS简介HDFS的架构 NameNodeDataNodeSecondary NameNode HDFS的工作原理 数据读写流程数据冗余与恢复 HDFS的安装和配置 环境准备HDFS安装步骤HDFS配置文件启动HDFS HDFS的使用 基本命令HDFS Shell操作Java API操作 HDFS…...

Linux 实验一Linux系统安装

一、实验日期与地址 1、实验日期&#xff1a;2024年 2 月28 日 2、实验地址&#xff1a;S1-504 二、实验目的 1、掌握VMware Workstation建立虚拟机 2、掌握虚拟机环境下安装Centos 7 三、实验环境 VMware Workstation、Centos 7 四、实验内容 1、安装VMware Workstat…...

【人工智能】深度剖析AI伦理:强化隐私防线,推动算法公平性的核心议题

文章目录 &#x1f34a;1 人工智能兴起背后的伦理及道德风险1.1 算法偏见与歧视1.2 数据隐私侵权1.3 透明度受限1.4 决策失衡1.5 AI生成内容的危险性 &#x1f34a;2 建构AIGC伦理观&#xff1a;实现人机共创的永续提升2.1 技术手段与伦理预防2.2 即时警告与紧急关停措施2.3 法…...

如何解决微服务下引起的 分布式事务问题

一、什么是分布式事务&#xff1f; 虽然叫分布式事务&#xff0c;但不是一定是分布式部署的服务之间才会产生分布式事务。不是在同一个服务或同一个数据库架构下&#xff0c;产生的事务&#xff0c;也就是分布式事务。 跨数据源的分布式事务 跨服务的分布式事务 二、解决方…...

牛客周赛50轮+cf955+abc363

D-小红的因式分解_牛客周赛 Round 50 (nowcoder.com) 思路&#xff1a; 巨蠢的题目&#xff0c;ax^2bxca1*a2*x^2(b1*a2b2*a1)xb1*b2&#xff0c;即&#xff1a; aa1*a2,ba1*b2a2*b1,cb1*b2 数据范围很小&#xff0c;直接暴力枚举吧&#xff08;注意条件&#xff09; 代码…...

【MySQL】:对库和表的基本操作方法

数据库使用的介绍 什么是SQL 学习数据库的使用——>基于 SQL编程语言 来对数据库进行操作 重点表述的是“需求”&#xff0c;期望得到什么结果。&#xff08;至于结果是如何得到的&#xff0c;并不关键&#xff0c;都是数据库服务器在背后做好了&#xff09; 重点表述的是…...

Library not found for -lstdc++.6.0.9

解决方案一 由于项目已经很多年了&#xff0c;前段时间更新了Xcode发现编译报错lstdc这个库很早以前就被舍弃了&#xff0c;但是一个项目的维护都随着解决bug堆砌出来的&#xff0c;这也导致了我们的项目走上了这条路。 比如 Library not found for -lstdc.6.0.9 报的错&#x…...

防火墙之双机热备篇

为什么要在防火墙上配置双机热备技术呢&#xff1f; 相信大家都知道&#xff0c;为了提高可靠性&#xff0c;避免单点故障 肯定有聪明的小伙伴会想到那为什么不直接多配置两台防火墙&#xff0c;然后再将他们进行线路冗余&#xff0c;不就完成备份了吗&#xff1f; 答案是不…...

终端里面ifconfig命令无法运行

在 Ubuntu 以及基于 Debian 的系统中&#xff0c;ifconfig 命令可能不会默认安装&#xff0c;因为自 Ubuntu 17.10 版本开始&#xff0c;系统默认使用 ip 命令作为网络配置的主要工具&#xff0c;而 ifconfig 命令则来自 net-tools 包&#xff0c;该包不再作为标准工具被包含在…...

掌握Python中的文件序列化:Json和Pickle模块解析

Python 文件操作与管理&#xff1a;Open函数、Json与Pickle、Os模块 在Python中&#xff0c;文件是一个重要的数据处理对象。无论是读取数据、保存数据还是进行数据处理&#xff0c;文件操作都是Python编程中不可或缺的一部分。本文将详细介绍Python中文件操作的几种常用方法&…...

WordPress 6.6 “Dorsey多尔西”发布

WordPress 6.6 “Dorsey多尔西”已经发布&#xff0c;它以传奇的美国大乐队领袖 Tommy Dorsey 名字命名。Dorsey 以其音调流畅的长号和作品而闻名&#xff0c;他的音乐以其情感深度和充满活力的能量吸引了观众。 当您探索 WordPress 6.6 的新功能和增强功能时&#xff0c;让您的…...

核函数支持向量机(Kernel SVM)

核函数支持向量机&#xff08;Kernel SVM&#xff09;是一种非常强大的分类器&#xff0c;能够在非线性数据集上实现良好的分类效果。以下是关于核函数支持向量机的详细数学模型理论知识推导、实施步骤与参数解读&#xff0c;以及两个多维数据实例&#xff08;一个未优化模型&a…...

二分查找(折半查找)

这次不排序了&#xff0c;对排好序的数组做个查找吧 介绍 二分查找排序英文名为BinarySort&#xff0c;是一种效率较高的查找方法要求线性表必须采用顺序存储结构 基本思路 通过不断地将搜索范围缩小一半来找到目标元素&#xff1a; 1、假定数组为arr&#xff0c;需要查找的…...

arcgis紧凑型切片缓存(解决大范围切片,文件数量大的问题)

ArcGIS 切片缓存的紧凑型存储格式是一种优化的存储方式&#xff0c;用于提高切片缓存的存储效率和访问速度。紧凑型存储格式将多个切片文件合并为一个单一的 .bundle 文件&#xff0c;从而减少文件系统的开销和切片的加载时间。这类格式已经应用很久了&#xff0c;我记得2013我…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...