【LeetCode】day15:110 - 平衡二叉树, 257 - 二叉树的所有路径, 404 - 左叶子之和, 222 - 完全二叉树的节点个数
LeetCode 代码随想录跟练 Day15
- 110.平衡二叉树
- 257.二叉树的所有路径
- 404.左叶子之和
- 222.完全二叉树的节点个数
110.平衡二叉树
题目描述:
给定一个二叉树,判断它是否是 平衡二叉树
平衡二叉树的定义是,对于树中的每个节点,其左右子树的高度差不超过1。思路使用递归,对比左子树和右子树的高度差是否超过1,若超过1则当前节点返回-1作为标示,否则返回当前节点的最大深度。代码如下:
class Solution {
private:int traverse(TreeNode* root) {if (root == nullptr) return 0;int leftHeight = traverse(root->left);int rightHeight = traverse(root->right);if (leftHeight == -1 || rightHeight == -1) {return -1;}if (leftHeight - rightHeight > 1 || leftHeight - rightHeight < -1) {return -1;}return max(leftHeight, rightHeight) + 1;}public:bool isBalanced(TreeNode* root) {int height = traverse(root);if (height == -1) return false;return true;}
};
257.二叉树的所有路径
题目描述:
给你一个二叉树的根节点 root ,按 任意顺序 ,返回所有从根节点到叶子节点的路径。
叶子节点 是指没有子节点的节点。
主要思路为对树进行遍历并将遍历时的当前路径记录,并在到达叶子节点后将当前路径添加到结果中。同时在遍历过程中需要对路径的状态实时进行回溯,比如从当前节点退出,上一个节点的路径中就不应再保留当前节点的信息。这里使用字符串值传递方式,可以非显式的实现回溯。代码如下:
class Solution {
private:void traverse(TreeNode* root, string path, vector<string>& paths) {if (root == nullptr) return;if (!path.empty()) path += "->";path += to_string(root->val);if (!root->left && !root->right) {paths.push_back(path);return;}traverse(root->left, path, paths);traverse(root->right, path, paths);}public:vector<string> binaryTreePaths(TreeNode* root) {vector<string> res;if (root == nullptr) return res;traverse(root, "", res);return res;}
};
另外使用迭代法进行遍历时,原理相同,在push节点进入记录节点的stack时同时将当前路径同时push进入记录路径的stack中,这样在每次循环获取当前节点时获取到的路径是对应的。注意在分别对左右节点的路径修改时,由于存在需要在处理前一个之后继续处理后一个的情况(左右节点都不为nullptr),所以不能修改path变量而是应该通过临时变量记录路径并入栈。代码如下:
class Solution {
public:vector<string> binaryTreePaths(TreeNode* root) {vector<string> res;if (root == nullptr) return res;stack<TreeNode*> nodeStk;stack<string> pathStk;nodeStk.push(root);pathStk.push(to_string(root->val));while (!nodeStk.empty()) {TreeNode* cur = nodeStk.top(); nodeStk.pop();string path = pathStk.top(); pathStk.pop();if (!cur->left && !cur->right) {res.push_back(path);continue;}if (cur->left) {nodeStk.push(cur->left);pathStk.push(path + "->" + to_string(cur->left->val));}if (cur->right) {nodeStk.push(cur->right);pathStk.push(path + "->" + to_string(cur->right->val));}}return res;}
};
404.左叶子之和
题目描述:
给定二叉树的根节点 root ,返回所有左叶子之和。
示例 1:
输入: root = [3,9,20,null,null,15,7]
输出: 24
解释: 在这个二叉树中,有两个左叶子,分别是 9 和 15,所以返回 24
示例 2:
输入: root = [1]
输出: 0
在遍历时使用isLeft的bool变量标示当前节点是否是上一个状态的左节点,在确认叶子节点值时同时需要确保该bool变量为true,其余均为遍历框架。代码如下:
class Solution {
private:int traverse(TreeNode* root, bool isLeft) {if (root == nullptr) return 0;if (!root->left && !root->right && isLeft) {return root->val;}int left = traverse(root->left, true);int right = traverse(root->right, false);return left + right;}public:int sumOfLeftLeaves(TreeNode* root) {return traverse(root, false);}
};
同理可以使用迭代法,通过确认左节点的方式:若左节点不为nullptr且为叶子节点,则记录结果,除此之外的所有都不算左叶子。代码如下:
class Solution {
public:int sumOfLeftLeaves(TreeNode* root) {if (root == nullptr) return 0;stack<TreeNode*> stk;stk.push(root);int res = 0;while (!stk.empty()) {TreeNode* cur = stk.top(); stk.pop();// 若左节点不为nullptr且为叶子节点if (cur->left && !cur->left->left && !cur->left->right) {res += cur->left->val;}if (cur->left) stk.push(cur->left);if (cur->right) stk.push(cur->right);}return res;}
};
222.完全二叉树的节点个数
题目描述:
给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。
完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1 1 1~ 2 h 2^h 2h 个节点。
示例 1:
输入:root = [1,2,3,4,5,6]
输出:6
示例 2:
输入:root = []
输出:0
示例 3:
输入:root = [1]
输出:1
最简单的二叉树遍历计算节点数,这里使用层序遍历实现:
class Solution {
public:int countNodes(TreeNode* root) {if (root == nullptr) return 0;queue<TreeNode*> q;int res = 0;q.push(root);while (!q.empty()) {int size = q.size();res += size;while (size--) {TreeNode* cur = q.front(); q.pop();if (cur->left) q.push(cur->left);if (cur->right) q.push(cur->right);}}return res;}
};
由于题中所给为完全二叉树,可以根据其特性进行优化:完全二叉树的高度可以通过一直向左直到叶子节点确定、完全二叉树的节点树可以通过比较左右子树的高度来判断。
若左子树高度等于右子树,根据完全二叉树的性质可知左子树为满二叉树(完全二叉树的叶子节点从最左边开始,右子树高度相同则表示左边排满了);若高度不同相反则表示左子树不满,而右子树一定是高度小一行的满二叉树。代码如下:
class Solution {
private:int getHeight(TreeNode* node) {int res = 0;while (node) {++res;node = node->left;}return res;}public:int countNodes(TreeNode* root) {if (root == nullptr) return 0;int leftHeight = getHeight(root->left);int rightHeight = getHeight(root->right);if (leftHeight == rightHeight) {return (1 << leftHeight) + countNodes(root->right);} else {return (1 << rightHeight) + countNodes(root->left);}}
};
相关文章:
【LeetCode】day15:110 - 平衡二叉树, 257 - 二叉树的所有路径, 404 - 左叶子之和, 222 - 完全二叉树的节点个数
LeetCode 代码随想录跟练 Day15 110.平衡二叉树257.二叉树的所有路径404.左叶子之和222.完全二叉树的节点个数 110.平衡二叉树 题目描述: 给定一个二叉树,判断它是否是 平衡二叉树 平衡二叉树的定义是,对于树中的每个节点,其左右…...
【网络安全的神秘世界】Error:Archives directory /var/cache/apt/archives/partial is missing.
🌝博客主页:泥菩萨 💖专栏:Linux探索之旅 | 网络安全的神秘世界 | 专接本 | 每天学会一个渗透测试工具 ✨问题描述 在kali中想要安装beef-xss软件包时,发生如下报错: Error: Archives directory /var/cac…...
网络编程中的TCP和UDP
什么是TCP协议 TCP( Transmission control protocol )即传输控制协议,是一种面向连接、可靠的数据传输协议,它是为了在不可靠的互联网上提供可靠的端到端字节流而专门设计的一个传输协议。 面向连接 :数据传输之前客户端和服务器端必须建立连…...
基于python的时空地理加权回归(GTWR)模型
一、时空地理加权回归(GTWR)模型 时空地理加权回归(GTWR)模型是由美国科罗拉多州立大学的Andy Liaw、Stanley A. Fiel和Michael E. Bock于2008年提出的一种高级空间统计分析方法。它是在传统地理加权回归(GWR…...
什么是单例模式,有哪些应用?
目录 一、定义 二、应用场景 三、6种实现方式 1、懒汉式,线程不安全。 2、懒汉式,线程安全 3、双检锁/双重校验锁(DCL,即 double-checked locking) 4、静态内部类方式-------只适用于静态域 5、饿汉式 6、枚举…...
adb命令操作手机各种开关
打开iqoo手机热点设置 adb shell am start -n com.android.settings/com.android.settings.Settings$\VivoTetherSettingsActivity蓝牙模块 检查蓝牙状态的ADB命令 检查蓝牙开关状态 adb shell settings get global bluetooth_on开启和关闭蓝牙 使用Intent操作蓝牙…...
【分布式存储系统HDFS】架构和使用
分布式存储系统HDFS:架构和使用 目录 引言HDFS简介HDFS的架构 NameNodeDataNodeSecondary NameNode HDFS的工作原理 数据读写流程数据冗余与恢复 HDFS的安装和配置 环境准备HDFS安装步骤HDFS配置文件启动HDFS HDFS的使用 基本命令HDFS Shell操作Java API操作 HDFS…...
Linux 实验一Linux系统安装
一、实验日期与地址 1、实验日期:2024年 2 月28 日 2、实验地址:S1-504 二、实验目的 1、掌握VMware Workstation建立虚拟机 2、掌握虚拟机环境下安装Centos 7 三、实验环境 VMware Workstation、Centos 7 四、实验内容 1、安装VMware Workstat…...
【人工智能】深度剖析AI伦理:强化隐私防线,推动算法公平性的核心议题
文章目录 🍊1 人工智能兴起背后的伦理及道德风险1.1 算法偏见与歧视1.2 数据隐私侵权1.3 透明度受限1.4 决策失衡1.5 AI生成内容的危险性 🍊2 建构AIGC伦理观:实现人机共创的永续提升2.1 技术手段与伦理预防2.2 即时警告与紧急关停措施2.3 法…...
如何解决微服务下引起的 分布式事务问题
一、什么是分布式事务? 虽然叫分布式事务,但不是一定是分布式部署的服务之间才会产生分布式事务。不是在同一个服务或同一个数据库架构下,产生的事务,也就是分布式事务。 跨数据源的分布式事务 跨服务的分布式事务 二、解决方…...
牛客周赛50轮+cf955+abc363
D-小红的因式分解_牛客周赛 Round 50 (nowcoder.com) 思路: 巨蠢的题目,ax^2bxca1*a2*x^2(b1*a2b2*a1)xb1*b2,即: aa1*a2,ba1*b2a2*b1,cb1*b2 数据范围很小,直接暴力枚举吧(注意条件) 代码…...
【MySQL】:对库和表的基本操作方法
数据库使用的介绍 什么是SQL 学习数据库的使用——>基于 SQL编程语言 来对数据库进行操作 重点表述的是“需求”,期望得到什么结果。(至于结果是如何得到的,并不关键,都是数据库服务器在背后做好了) 重点表述的是…...
Library not found for -lstdc++.6.0.9
解决方案一 由于项目已经很多年了,前段时间更新了Xcode发现编译报错lstdc这个库很早以前就被舍弃了,但是一个项目的维护都随着解决bug堆砌出来的,这也导致了我们的项目走上了这条路。 比如 Library not found for -lstdc.6.0.9 报的错&#x…...
防火墙之双机热备篇
为什么要在防火墙上配置双机热备技术呢? 相信大家都知道,为了提高可靠性,避免单点故障 肯定有聪明的小伙伴会想到那为什么不直接多配置两台防火墙,然后再将他们进行线路冗余,不就完成备份了吗? 答案是不…...
终端里面ifconfig命令无法运行
在 Ubuntu 以及基于 Debian 的系统中,ifconfig 命令可能不会默认安装,因为自 Ubuntu 17.10 版本开始,系统默认使用 ip 命令作为网络配置的主要工具,而 ifconfig 命令则来自 net-tools 包,该包不再作为标准工具被包含在…...
掌握Python中的文件序列化:Json和Pickle模块解析
Python 文件操作与管理:Open函数、Json与Pickle、Os模块 在Python中,文件是一个重要的数据处理对象。无论是读取数据、保存数据还是进行数据处理,文件操作都是Python编程中不可或缺的一部分。本文将详细介绍Python中文件操作的几种常用方法&…...
WordPress 6.6 “Dorsey多尔西”发布
WordPress 6.6 “Dorsey多尔西”已经发布,它以传奇的美国大乐队领袖 Tommy Dorsey 名字命名。Dorsey 以其音调流畅的长号和作品而闻名,他的音乐以其情感深度和充满活力的能量吸引了观众。 当您探索 WordPress 6.6 的新功能和增强功能时,让您的…...
核函数支持向量机(Kernel SVM)
核函数支持向量机(Kernel SVM)是一种非常强大的分类器,能够在非线性数据集上实现良好的分类效果。以下是关于核函数支持向量机的详细数学模型理论知识推导、实施步骤与参数解读,以及两个多维数据实例(一个未优化模型&a…...
二分查找(折半查找)
这次不排序了,对排好序的数组做个查找吧 介绍 二分查找排序英文名为BinarySort,是一种效率较高的查找方法要求线性表必须采用顺序存储结构 基本思路 通过不断地将搜索范围缩小一半来找到目标元素: 1、假定数组为arr,需要查找的…...
arcgis紧凑型切片缓存(解决大范围切片,文件数量大的问题)
ArcGIS 切片缓存的紧凑型存储格式是一种优化的存储方式,用于提高切片缓存的存储效率和访问速度。紧凑型存储格式将多个切片文件合并为一个单一的 .bundle 文件,从而减少文件系统的开销和切片的加载时间。这类格式已经应用很久了,我记得2013我…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

