当前位置: 首页 > news >正文

scikit-learn库学习之make_regression函数

scikit-learn库学习之make_regression函数

一、简介

make_regression是scikit-learn库中用于生成回归问题数据集的函数。它主要用于创建合成的回归数据集,以便在算法的开发和测试中使用。

二、语法和参数

sklearn.datasets.make_regression(n_samples=100, n_features=100, *, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None)
  • n_samples: int, 可选,样本数量,默认值为100。
  • n_features: int, 可选,特征数量,默认值为100。
  • n_informative: int, 可选,有用特征的数量,默认值为10。
  • n_targets: int, 可选,目标变量的数量,默认值为1。
  • bias: float, 可选,偏置项,默认值为0.0。
  • effective_rank: int 或 None, 可选,矩阵的有效秩(生成具有指定有效秩的低秩矩阵)。
  • tail_strength: float, 可选,稀疏奇异值分解的尾部强度,默认值为0.5。
  • noise: float, 可选,噪声的标准差,默认值为0.0。
  • shuffle: boolean, 可选,是否在生成样本后对其进行洗牌,默认值为True。
  • coef: boolean, 可选,如果为True,则返回线性模型的系数,默认值为False。
  • random_state: int, RandomState instance 或 None, 可选,随机数生成器的种子。

三、实例

3.1 生成具有默认参数的回归数据集
import numpy as np
from sklearn.datasets import make_regression# 生成回归数据集
X, y = make_regression()print("特征矩阵X:\n", X)
print("目标变量y:\n", y)

输出:

特征矩阵X:[[ 0.22149882 -0.06453352  0.12052486 ... -0.82411415  0.23856925-0.16168211][-0.20101287 -0.44072967 -1.14649484 ...  0.63646684 -0.425003860.4671914 ]...[ 0.90505363 -0.53703078  0.50773971 ...  1.14990328  0.05411115-0.08363001]]
目标变量y:[-144.31924045  181.62052712  -48.9289649  ...  235.29125152223.43232493  102.79266155]
3.2 生成带有噪声和偏置的回归数据集
import numpy as np
from sklearn.datasets import make_regression# 生成带有噪声和偏置的回归数据集
X, y = make_regression(noise=10.0, bias=100.0)print("特征矩阵X:\n", X)
print("目标变量y:\n", y)

输出:

特征矩阵X:[[ 1.24086241  0.00303736  1.17925455 ... -1.07069539  0.93889406-0.22232984][-0.74205332  0.65462794  0.14662052 ... -0.59564518  1.286698671.00484528]...[ 1.00952406 -0.34893754  0.04816599 ...  0.53224443  1.08944202-0.68298357]]
目标变量y:[  97.85236613   57.67386596  143.4882752  ...  -43.32816291-160.72606466  -91.79449558]
3.3 生成指定有效秩的回归数据集
import numpy as np
from sklearn.datasets import make_regression# 生成指定有效秩的回归数据集
X, y = make_regression(effective_rank=2)print("特征矩阵X:\n", X)
print("目标变量y:\n", y)

输出:

特征矩阵X:[[-0.13033419 -0.11927356 -0.1261044  ... -0.11075221 -0.09502064-0.15613214][-0.12111371 -0.1146456  -0.1225812  ... -0.10441777 -0.09032011-0.14703234]...[-0.13796815 -0.12383917 -0.13535568 ... -0.11880625 -0.10313284-0.17030849]]
目标变量y:[-123.66530542 -143.25411773 -127.83807546 ... -145.23413153-131.64245155 -124.93295103]

四、注意事项

  • 参数n_samplesn_features决定了生成数据集的大小和维度。
  • n_informative参数决定了有用特征的数量,这些特征对目标变量有显著影响。
  • noise参数添加到目标变量中的噪声,值越大,数据越不纯。
  • 设置random_state参数以确保每次生成数据的一致性。
  • 如果需要生成指定秩的矩阵,可以使用effective_rank参数。

相关文章:

scikit-learn库学习之make_regression函数

scikit-learn库学习之make_regression函数 一、简介 make_regression是scikit-learn库中用于生成回归问题数据集的函数。它主要用于创建合成的回归数据集,以便在算法的开发和测试中使用。 二、语法和参数 sklearn.datasets.make_regression(n_samples100, n_feat…...

经典文献阅读之--World Models for Autonomous Driving(自动驾驶的世界模型:综述)

Tip: 如果你在进行深度学习、自动驾驶、模型推理、微调或AI绘画出图等任务,并且需要GPU资源,可以考虑使用UCloud云计算旗下的Compshare的GPU算力云平台。他们提供高性价比的4090 GPU,按时收费每卡2.6元,月卡只需要1.7元每小时&…...

孙健提到的实验室的研究方向之一是什么?()

孙健提到的实验室的研究方向之一是什么?() 点击查看答案 A.虚拟现实B.环境感知和理解 C.智能体博弈D.所有选项都正确 图灵奖是在哪一年设立的?() A.1962B.1966 C.1976D.1986 孙健代表的实验室的前身主要研究什么?&…...

初级java每日一道面试题-2024年7月23日-Iterator和ListIterator有什么区别?

面试官: Iterator和ListIterator有什么区别? 我回答: Iterator和ListIterator都是Java集合框架中用于遍历集合元素的接口,但它们之间存在一些关键的区别,主要体现在功能和使用场景上。下面我将详细解释这两种迭代器的不同之处: 1. Iterat…...

2024-07-23 Unity AI行为树2 —— 项目介绍

文章目录 1 项目介绍2 AI 代码介绍2.1 BTBaseNode / BTControlNode2.2 动作/条件节点2.3 选择 / 顺序节点 3 怪物实现4 其他功能5 UML 类图 项目借鉴 B 站唐老狮 2023年直播内容。 点击前往唐老狮 B 站主页。 1 项目介绍 ​ 本项目使用 Unity 2022.3.32f1c1,实现基…...

Unity-URP-SSAO记录

勾选After Opacity Unity-URP管线,本来又一个“bug”, 网上查不到很多关于ssao的资料 以为会不会又是一个极度少人用的东西 而且几乎都是要第三方替代 也完全没有SSAO大概的消耗是多少,完全是黑盒(因为用的人少,研究的人少,优…...

无人机上磁航技术详解

磁航技术,也被称为地磁导航,是一种利用地球磁场信息来实现导航的技术。在无人机领域,磁航技术主要用于辅助惯性导航系统(INS)进行航向角的测量与校正,提高无人机的飞行稳定性和准确性。其技术原理是&#x…...

使用 cURL 命令测试网站响应时间

文章目录 使用 cURL 命令测试网站响应时间工具介绍cURL 命令详解命令参数说明输出格式说明示例运行结果总结使用 cURL 命令测试网站响应时间 本文将介绍如何使用 cURL 命令行工具来测试一个网站的响应时间。具体来说,我们将使用 cURL 命令来测量并显示各种网络性能指标,包括 …...

「网络通信」HTTP 协议

HTTP 🍉简介🍉抓包工具🍉报文结构🍌请求🍌响应🍌URL🥝URL encode 🍌方法🍌报文字段🥝Host🥝Content-Length & Content-Type🥝User…...

科普文:后端性能优化的实战小结

一、背景与效果 ICBU的核心沟通场景有了10年的“积累”,核心场景的界面响应耗时被拉的越来越长,也让性能优化工作提上了日程,先说结论,经过这一波前后端齐心协力的优化努力,两个核心界面90分位的数据,FCP平…...

LeetCode-day23-3098. 求出所有子序列的能量和

LeetCode-day23-3098. 求出所有子序列的能量和 题目描述示例示例1:示例2:示例3: 思路代码 题目描述 给你一个长度为 n 的整数数组 nums 和一个 正 整数 k 。 一个 子序列的 能量 定义为子序列中 任意 两个元素的差值绝对值的 最小值 。 请…...

CSS3雷达扫描效果

CSS3雷达扫描效果https://www.bootstrapmb.com/item/14840 要创建一个CSS3的雷达扫描效果,我们可以使用CSS的动画(keyframes)和transform属性。以下是一个简单的示例,展示了如何创建一个类似雷达扫描的动画效果: HTM…...

单例模式懒汉模式和饿汉模式

线程安全 单例模式在单线程中,当然是安全的。但是如果在多线程中,由于并行判断,可能会导致创建多个实例。那么如何保证在多线程中单例还是只有一个实例呢? 常见的三种方式: 局部静态变量 原理和饿汉模式相似,利用static只会初始…...

python __repr__和__str__区别

1. __repr__ __repr__ 方法由 repr() 内置函数调用,用于计算对象的“正式”字符串表示形式。理想情况下,这个字符串应该看起来像一个有效的 Python 表达式,可以在适当的环境下用来重新创建具有相同值的对象。如果这不可能实现,那…...

huawei USG6001v1学习----NAT和智能选路

目录 1.NAT的分类 2.智能选路 1.就近选路 2.策略路由 3.智能选路 NAT:(Network Address Translation,网络地址转换) 指网络地址转换,1994年提出的。NAT是用于在本地网络中使用私有地址,在连接互联网时转而使用全局…...

FPGA JTAG最小系统 EP2C5T144C8N

FPGA的文档没有相应的基础还真不容易看懂,下面是B站上对FPGA文档的解读(本文非对文档解读,只是为个人记录第三期:CycloneIV E最小系统板设计(一)从Datasheet上获取FPGA的基本参数_哔哩哔哩_bilibili 电源部份 核心电…...

Android 15 之如何快速适配 16K Page Size

在此之前,我们通过 《Android 15 上 16K Page Size 为什么是最坑》 介绍了: 什么是16K Page Size为什么它对于 Android 很坑如何测试 如果你还没了解,建议先去了解下前文,然后本篇主要是提供适配的思路,因为这类适配…...

学习unity官方的网络插件Netcode【一】

对bool值的个人理解: using Unity.Netcode; using UnityEngine; //个人理解:通过Rpc完成了一次客户端给服务端发消息,服务端再向所有客户端广播消息 public class RpcTest : NetworkBehaviour {public override void OnNetworkSpawn(){if (!…...

QT写一个mainWindow

切换风格的写法&#xff1a; 先看看样式效果&#xff1a; mian_window.h文件 #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow>class MainWindow : public QMainWindow {Q_OBJECTpublic:MainWindow(QWidget *parent nullptr);~MainWindow();void Ini…...

Java查找算法练习(2024.7.23)

顺序查找 package SearchExercise20240723; import java.util.Scanner; public class SearchExercise {public static void main(String[] args) {Scanner sc new Scanner(System.in);System.out.println("需要多大的数组?");int size sc.nextInt();int[] array …...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​&#xff1a;Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​&#xff1a; V8引擎优化&#xff08;for of替代forEach、Map/Set替代Object&#xff09;。默认使用更快的md4哈希算法。AST直接从Loa…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...