当前位置: 首页 > news >正文

深度学习守护夜行安全:夜视行人检测系统详解

基于深度学习的夜视行人检测系统(UI界面+YOLOv8/v7/v6/v5代码+训练数据集)

引言

夜视行人检测在自动驾驶和智能监控中至关重要。然而,由于光线不足,夜间行人检测面临巨大挑战。深度学习技术,特别是YOLO(You Only Look Once)模型,为解决这一问题提供了有效的方法。本文将详细介绍如何构建一个基于深度学习的夜视行人检测系统,涵盖环境搭建、数据集准备、模型训练、系统实现及用户界面设计。

系统概述

本系统的主要步骤如下:

  1. 环境搭建
  2. 数据收集与处理
  3. 模型训练
  4. 系统实现
  5. 用户界面设计

环境搭建

首先,我们需要搭建一个合适的开发环境。本文使用Python 3.8或以上版本,并依赖于多个深度学习和图像处理库。

安装必要的库

我们需要安装以下库:

  • numpy: 用于数值计算
  • pandas: 用于数据处理
  • matplotlib: 用于数据可视化
  • opencv-python: 用于图像处理
  • torchtorchvision: PyTorch深度学习框架
  • ultralytics: YOLO实现
pip install numpy pandas matplotlib opencv-python torch torchvision ultralytics pyqt5

数据收集与处理

数据收集

对于夜视行人检测,我们需要收集包含夜间行人图像的数据集。可以从公开的夜间行人数据集下载,或使用红外摄像头自行采集。

数据处理

将图像数据整理到指定的文件夹结构,并标注行人位置。以下是一个示例的文件夹结构:

datasets/├── images/│   ├── train/│   │   ├── image1.jpg│   │   ├── image2.jpg│   ├── val/│   │   ├── image1.jpg│   │   ├── image2.jpg├── labels/├── train/│   ├── image1.txt│   ├── image2.txt├── val/├── image1.txt├── image2.txt

每个标签文件的内容如下:

class x_center y_center width height

其中,class表示类别编号,x_centery_center为归一化后的中心坐标,widthheight为归一化后的宽度和高度。

模型训练

使用YOLO模型进行训练。

配置文件

创建一个配置文件config.yaml

path: datasets
train: images/train
val: images/val
test: images/testnc: 1  # 类别数
names: ['person']

训练代码

使用以下代码训练模型:

from ultralytics import YOLO# 加载模型
model = YOLO('yolov8n.pt')# 训练模型
model.train(data='config.yaml', epochs=50, imgsz=640, batch=16, lr0=0.01)

系统实现

训练好的模型可以用于实时行人检测。我们使用OpenCV读取视频流,并调用YOLO模型进行检测。

检测代码

import cv2
from ultralytics import YOLO# 加载训练好的模型
model = YOLO('best.pt')# 打开视频流
cap = cv2.VideoCapture('video.mp4')while cap.isOpened():ret, frame = cap.read()if not ret:break# 检测行人results = model(frame)for result in results:bbox = result['bbox']label = result['label']confidence = result['confidence']# 画框和标签cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2)cv2.putText(frame, f'{label} {confidence:.2f}', (bbox[0], bbox[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)# 显示结果cv2.imshow('Night Vision Pedestrian Detection', frame)if cv2.waitKey(1) & 0xFF == ord('q'):breakcap.release()
cv2.destroyAllWindows()

用户界面设计

为了提高系统的易用性,我们需要设计一个用户友好的界面。本文使用PyQt5实现用户界面,提供图片或视频播放和行人检测结果显示。

界面代码

以下是一个简单的PyQt5界面代码示例:

import sys
from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QLabel, QPushButton, QFileDialog
from PyQt5.QtGui import QPixmap, QImage
import cv2
from ultralytics import YOLOclass PedestrianDetectionUI(QWidget):def __init__(self):super().__init__()self.initUI()self.model = YOLO('best.pt')def initUI(self):self.setWindowTitle('Night Vision Pedestrian Detection System')self.layout = QVBoxLayout()self.label = QLabel(self)self.layout.addWidget(self.label)self.button = QPushButton('Open Image or Video', self)self.button.clicked.connect(self.open_file)self.layout.addWidget(self.button)self.setLayout(self.layout)def open_file(self):options = QFileDialog.Options()file_path, _ = QFileDialog.getOpenFileName(self, "Open File", "", "All Files (*);;MP4 Files (*.mp4);;JPEG Files (*.jpg);;PNG Files (*.png)", options=options)if file_path:if file_path.endswith('.mp4'):self.detect_pedestrian_video(file_path)else:self.detect_pedestrian_image(file_path)def detect_pedestrian_image(self, file_path):frame = cv2.imread(file_path)results = self.model(frame)for result in results:bbox = result['bbox']label = result['label']confidence = result['confidence']cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2)cv2.putText(frame, f'{label} {confidence:.2f}', (bbox[0], bbox[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)height, width, channel = frame.shapebytesPerLine = 3 * widthqImg = QImage(frame.data, width, height, bytesPerLine, QImage.Format_RGB888).rgbSwapped()self.label.setPixmap(QPixmap.fromImage(qImg))def detect_pedestrian_video(self, file_path):cap = cv2.VideoCapture(file_path)while cap.isOpened():ret, frame = cap.read()if not ret:break# 检测行人results = self.model(frame)for result in results:bbox = result['bbox']label = result['label']confidence = result['confidence']# 画框和标签cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2)cv2.putText(frame, f'{label} {confidence:.2f}', (bbox[0], bbox[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)height, width, channel = frame.shapebytesPerLine = 3 * widthqImg = QImage(frame.data, width, height, bytesPerLine, QImage.Format_RGB888).rgbSwapped()self.label.setPixmap(QPixmap.fromImage(qImg))cv2.waitKey(1)cap.release()if __name__ == '__main__':app = QApplication(sys.argv)ex = PedestrianDetectionUI()ex.show()sys.exit(app.exec_())

上述代码实现了一个简单的PyQt5界面,用户可以通过界面打开图片或视频文件,并实时查看夜视行人检测结果。

进一步优化

为了进一步提升系统性能,我们可以在以下几个方面进行优化:

数据增强

通过数据增强技术,可以增加训练数据的多样性,从而提高模型的泛化能力。例如,我们可以对图像进行随机裁剪、旋转、翻转等操作。

from torchvision import transformsdata_transforms = {'train': transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]),'val': transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
}

模型调优

可以尝试不同的YOLO模型(如YOLOv5、YOLOv6、YOLOv7、YOLOv8),并调整模型的超参数,如学习率、批量大小、训练轮数等,以获得最佳性能。

部署优化

在实际部署中,可以使用TensorRT等工具对模型进行优化,以提高推理速度和效率。

总结与声明

本文详细介绍了如何构建一个基于深度学习的夜视行人检测系统。从环境搭建、数据收集与处理、模型训练、系统实现到用户界面设计。
声明:本文只是简单的项目思路,如有部署的想法,想要(UI界面+YOLOv8/v7/v6/v5代码+训练数据集)的可以联系作者。

相关文章:

深度学习守护夜行安全:夜视行人检测系统详解

基于深度学习的夜视行人检测系统(UI界面YOLOv8/v7/v6/v5代码训练数据集) 引言 夜视行人检测在自动驾驶和智能监控中至关重要。然而,由于光线不足,夜间行人检测面临巨大挑战。深度学习技术,特别是YOLO(You…...

亚信安慧AntDB亮相PostgreSQL中国技术大会,获“数据库最佳应用奖”并分享数据库应用实践

7月12日,第13届PostgreSQL中国技术大会在杭州顺利举办,亚信安慧AntDB数据库荣获“数据库最佳应用奖”。大会上,亚信安慧AntDB数据库同事带来《基于AntDB的CRM系统全域数据库替换实践》和《亚信安慧AntDB数据库运维之路》两场精彩演讲&#xf…...

如何减少白屏的时间

前端性能优化是前端开发中一个重要环节,它包括很多内容,其中页面的白屏时间是用户最初接触到的部分,白屏时间过长会显著影响用户的留存率和转换率。 我们以一个 APP 内嵌 Webview 打开页面作为例子,来分析页面打开过程以及可优化…...

科研成果 | 高精尖中心取得高性能区块链交易调度技术突破

近日,未来区块链与隐私计算高精尖创新中心研究团队在区块链交易效率方面取得突破性进展,最新成果“高性能区块链交易调度引擎”首次为长安链带来高并行度的交易调度,充分利用现有计算资源,显著提升长安链交易处理速度。 随着区块…...

go语言学习文档精简版

Go语言是一门开源的编程语言,目的在于降低构建简单、可靠、高效软件的门槛。Go平衡了底层系统语言的能力,以及在现代语言中所见到的高级特性。 你好,Go package main // 程序组织成包import "fmt" // fmt包用于格式化输出数据// …...

立元科技-Java面经

面试时间:2024年2月13日 面试地点:线下 面试流程:一轮面试 首先写了点笔试题,但是人家根本不看(这个也就一面) (聊的还行,但是公司环境不是特别的好,一次面试&#x…...

OpenGL入门第六步:材质

目录 结果显示 材质介绍 函数解析 具体代码 结果显示 材质介绍 当描述一个表面时,我们可以分别为三个光照分量定义一个材质颜色(Material Color):环境光照(Ambient Lighting)、漫反射光照(Diffuse Lighting)和镜面光照(Specular Lighting)。通过为每个分量指定一个颜色,…...

新版SpringSecurity5.x使用与配置

目录 一、了解SpringSecurity 1.1 什么是Spring Security? 1.2 Spring Security功能 1.3 Spring Security原理 1.4 RABC (Role-Based Access Control) 二、SpringSecurity简单案例 2.1 引入SpringSecurity依赖 2.2 创建一个简单的Controller 三、SpringSecu…...

JavaScript实战 - JavaScript 中实现线程锁

作者:逍遥Sean 简介:一个主修Java的Web网站\游戏服务器后端开发者 主页:https://blog.csdn.net/Ureliable 觉得博主文章不错的话,可以三连支持一下~ 如有需要我的支持,请私信或评论留言! 前言: …...

基于PaddleClas的人物年龄分类项目

目录 一、任务概述 二、算法研发 2.1 下载数据集 2.2 数据集预处理 2.3 安装PaddleClas套件 2.4 算法训练 2.5 静态图导出 2.6 静态图推理 三、小结 一、任务概述 最近遇到个需求,需要将图像中的人物区分为成人和小孩,这是一个典型的二分类问题…...

20240725java的Controller、DAO、DO、Mapper、Service层、反射、AOP注解等内容的学习

在Java开发中,‌controller、‌dao、‌do、‌mapper等概念通常与MVC(‌Model-View-Controller)‌架构和分层设计相关。‌这些概念各自承担着不同的职责,‌共同协作以构建和运行一个应用程序。‌以下是这些概念的解释:‌…...

dynslam的安装

1. 安装opencv 2.4.9 下载opencv2.4.9 apt-get install build-essential apt-get install libgtk2.0-dev libavcodec-dev libavformat-dev libtiff4-dev libswscale-dev libjasper-dev apt-get install cmake apt-get install pkg-config 进入安装包文件: m…...

stats 监控 macOS 系统

Stats 监控 macOS 系统 CPU 利用率GPU 利用率内存使用情况磁盘利用率网络使用情况电池电量 brew install stats参考 stats github...

后端面试题日常练-day05 【Java基础】

题目 希望这些选择题能够帮助您进行后端面试的准备,答案在文末 在Java中,以下哪个关键字用于表示方法重写(Override)? a) override b) overrule c) overwrite d) supercede Java中的HashMap和Hashtable有什么区别&am…...

mac|安装PostgreSQL

1、官网下载:EDB: Open-Source, Enterprise Postgres Database Management 选择需要的版本: 双击得到的.dmg文件 双击,弹窗选择打开,一路next,然后输入你要设置的密码,默认账号名字为:postgres…...

内网对抗-隧道技术篇防火墙组策略FRPNPSChiselSocks代理端口映射C2上线

知识点: 1、隧道技术篇-传输层-工具项目-Frp&Nps&Chisel 2、隧道技术篇-传输层-端口转发&Socks建立&C2上线Frp Frp是专注于内网穿透的高性能的反向代理应用,支持TCP、UDP、HTTP、HTTPS等多种协议。可以将内网服务以安全、便捷的方式通过…...

arinc664总线协议

AFDX总线协议简介 (1)AFDX的传输速率高:带宽100MHZ,远远高于其他的类型的航空总线。(2)AFDX网络的鲁棒性高:AFDX的双冗余备份网络可以在某一个网络出现故障时,仍能正常通讯。 其中…...

UNIX 域协议

1. UNIX域协议 利用socket编程接口实现本地进程间通信 UNIX域协议套接字:可以使用TCP,也可以使用UDP SOCK_STREAM -----> TCP 面向字节流 SOCK_DGRAM -----> UDP 面向数据报 UNIX域协议并不是一个实际的协议族,而是在单个主机上执…...

昇思25天学习打卡营第17天|LLM-基于MindSpore的GPT2文本摘要

打卡 目录 打卡 环境准备 准备阶段 数据加载与预处理 BertTokenizer 部分输出 模型构建 gpt2模型结构输出 训练流程 部分输出 部分输出2(减少训练数据) 推理流程 环境准备 pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspo…...

Clion开发STM32——移植FreeModbus

STM32型号 :STM32H743VIT6 FreeModbus版本 :1.6 使用工具:stm32cubeMX,Clion 使用STM32作从机,模式:RTU 网上用keil的比较多,用Clion的比较少,如果你也用Clion,那么希望…...

<6>-MySQL表的增删查改

目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表&#xf…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

【HTTP三个基础问题】

面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

嵌入式常见 CPU 架构

架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集,单周期执行;低功耗、CIP 独立外设;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel(原始…...

FFmpeg avformat_open_input函数分析

函数内部的总体流程如下: avformat_open_input 精简后的代码如下: int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...

GAN模式奔溃的探讨论文综述(一)

简介 简介:今天带来一篇关于GAN的,对于模式奔溃的一个探讨的一个问题,帮助大家更好的解决训练中遇到的一个难题。 论文题目:An in-depth review and analysis of mode collapse in GAN 期刊:Machine Learning 链接:...

算法刷题-回溯

今天给大家分享的还是一道关于dfs回溯的问题,对于这类问题大家还是要多刷和总结,总体难度还是偏大。 对于回溯问题有几个关键点: 1.首先对于这类回溯可以节点可以随机选择的问题,要做mian函数中循环调用dfs(i&#x…...