大模型微调:参数高效微调(PEFT)方法总结
PEFT (Parameter-Efficient Fine-Tuning) 参数高效微调是一种针对大模型微调的技术,旨在减少微调过程中需要调整的参数量,同时保持或提高模型的性能。
以LORA、Adapter Tuning 和 Prompt Tuning 为主的PEFT方法总结如下

LORA
- 论文题目:LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS
- 论文链接:https://arxiv.org/pdf/2106.09685
- 发表时间:2021.10.16

含义
一种用于微调大型预训练语言模型(如GPT-3或BERT)的方法。核心思想是在模型的关键层中添加小型、低秩的矩阵来调整模型的行为,而不是直接改变整个模型的结构。
原理
低秩矩阵分解: LoRA通过将权重矩阵分解为两个较低秩的矩阵来减少参数量。具体来说,对于模型中的某个权重矩阵 W,LoRA将其表示为两个较小的矩阵 A 和 B,使得 W≈A×B。这样可以有效地减少需要更新的参数数量。
保持预训练权重不变: LoRA保留了预训练模型的原始权重,并在此基础上进行调整。通过添加低秩更新矩阵 ΔW=A×B 到原始权重矩阵 W,来得到新的权重矩阵 W′=W+ΔW。这种方法允许模型在保留预训练知识的同时,适应新的任务。
Adapter Tuning
- 论文题目:Parameter-Efficient Transfer Learning for NLP
- 论文链接:https://arxiv.org/pdf/1902.00751
- 发表时间:2019.6.13

含义
通过在预训练模型的基础上添加适配器层(adapters),来实现特定任务的微调。这种方法旨在保留预训练模型的原始权重,仅在需要适应新任务的地方进行小规模的参数调整。
原理
插入适配器层: 在预训练模型的特定位置(通常是在每个 Transformer 层的内部或后面)插入适配器层。
适配器层结构: 这些适配器层是一些小规模的神经网络,通常由一个下采样层(减少维度)、一个激活函数(如 ReLU)和一个上采样层(恢复维度)组成。
冻结预训练权重: 在微调过程中,预训练模型的原始权重保持不变,仅训练适配器层的权重。
高效微调: 由于适配器层的参数数量相对较少,微调过程变得更加高效。适配器层可以针对不同任务进行训练,而不影响预训练模型的核心结构。
Prompt Tuning
- 论文题目:The Power of Scale for Parameter-Efficient Prompt Tuning
- 论文链接:https://arxiv.org/pdf/2104.08691
- 发表时间:2021.9.2

含义
在预训练语言模型的输入中添加可学习的嵌入向量作为提示。其核心思想是通过引入任务特定的提示(prompts),而非对整个模型进行全参数更新,从而实现对模型的高效微调
原理
设计提示词: 输入提示(prompt)通常包含任务描述、示例或特定的输入格式。例如,对于情感分类任务,可以设计一个提示词:“这段文字的情感是:”。
优化提示词: Prompt Tuning 的优化对象是输入提示的词嵌入(embedding)。通过梯度下降等优化算法,调整提示词的词嵌入,使得模型在特定任务上的表现达到最优。
冻结预训练模型: 在 Prompt Tuning 中,预训练模型的权重保持不变,仅优化提示词的嵌入。
Prefix-Tuning
- 论文题目:Prefix-Tuning: Optimizing Continuous Prompts for Generation
- 论文链接:https://arxiv.org/pdf/2101.00190
- 发表时间:2021.1.1

含义
通过固定预训练模型的参数,仅在输入序列的前面添加一个可训练的前缀(prefix),从而在不改变模型参数的情况下实现特定任务的适应
原理
固定模型参数: 不对预训练语言模型(如 GPT-3、BERT 等)的参数进行微调
添加可训练前缀: 在输入序列的前面添加一个可训练的前缀向量。这个前缀向量的长度和维度可以根据具体任务进行调整
任务适应: 在实际应用中,前缀向量与输入序列一起输入到预训练模型中。由于前缀向量是可训练的,模型可以通过调整前缀向量来适应特定的任务,而无需改变模型本身的参数。
P-Tuning
-
论文题目:GPT Understands, Too
-
论文链接:https://arxiv.org/pdf/2103.10385v1
-
发表时间:2021.3.18

含义
在模型输入中插入一些可训练的提示(prompts),这些提示是嵌入向量(embedding vectors),在训练过程中被优化
原理
固定模型参数: 和 Prefix-Tuning 类似,不改模型参数
插入可训练提示: 在输入序列的适当位置插入一些可训练的提示向量。
任务适应: 在训练过程中,这些提示向量与输入序列一起输入到预训练模型中
P-Tuning V2
- 论文题目:P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
- 论文链接:https://arxiv.org/pdf/2110.07602v2
- 发表时间:2021.10.18

含义
保留了 P-Tuning 的核心思想,即通过优化输入提示向量来引导预训练模型处理特定任务
原理
相比较于P-Tuning:
动态提示优化: 采用动态提示优化方法
多层提示插入: P-Tuning V2 不仅在输入序列的前面插入提示向量,还在模型的不同层次(如中间层)插入提示向量
BitFit
- 论文题目:BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models
- 论文链接:https://arxiv.org/abs/2106.10199
- 发表时间:2021.6.18

含义
通过仅微调模型的偏置参数来适应新的任务,从而减少了需要调整的参数量。
原理
-
原始 BERT 模型:包含多层 Transformer,每层有权重矩阵 W 和偏置 b。
-
BitFit 微调:保持所有权重矩阵 W 不变,只微调每层的偏置参数 b
DistilBERT
- 论文题目:DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter
- 论文链接:https://arxiv.org/abs/1910.01108
- 发表时间:2020.3.1

含义
使用知识蒸馏技术将大模型压缩成更小的模型,从而减少微调所需的计算资源和时间。
原理
知识蒸馏是一种模型压缩技术,通过训练一个较小的学生模型(student model)来模仿较大教师模型(teacher model)的行为。具体步骤如下:
- 教师模型:使用预训练的 BERT 模型作为教师模型。
- 学生模型:构建一个较小的 BERT 模型,即 DistilBERT。
- 训练过程:在训练过程中,学生模型通过模仿教师模型的输出来学习。损失函数不仅包括学生模型和教师模型输出之间的差异,还包括学生模型和真实标签之间的差异。> PEFT (Parameter-Efficient Fine-Tuning) 参数高效微调是一种针对大模型微调的技术,旨在减少微调过程中需要调整的参数量,同时保持或提高模型的性能。
以LORA、Adapter Tuning 和 Prompt Tuning 为主的PEFT方法总结如下

LORA
- 论文题目:LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS
- 论文链接:https://arxiv.org/pdf/2106.09685
- 发表时间:2021.10.16

含义
一种用于微调大型预训练语言模型(如GPT-3或BERT)的方法。核心思想是在模型的关键层中添加小型、低秩的矩阵来调整模型的行为,而不是直接改变整个模型的结构。
原理
低秩矩阵分解: LoRA通过将权重矩阵分解为两个较低秩的矩阵来减少参数量。具体来说,对于模型中的某个权重矩阵 W,LoRA将其表示为两个较小的矩阵 A 和 B,使得 W≈A×B。这样可以有效地减少需要更新的参数数量。
保持预训练权重不变: LoRA保留了预训练模型的原始权重,并在此基础上进行调整。通过添加低秩更新矩阵 ΔW=A×B 到原始权重矩阵 W,来得到新的权重矩阵 W′=W+ΔW。这种方法允许模型在保留预训练知识的同时,适应新的任务。
Adapter Tuning
- 论文题目:Parameter-Efficient Transfer Learning for NLP
- 论文链接:https://arxiv.org/pdf/1902.00751
- 发表时间:2019.6.13

含义
通过在预训练模型的基础上添加适配器层(adapters),来实现特定任务的微调。这种方法旨在保留预训练模型的原始权重,仅在需要适应新任务的地方进行小规模的参数调整。
原理
插入适配器层: 在预训练模型的特定位置(通常是在每个 Transformer 层的内部或后面)插入适配器层。
适配器层结构: 这些适配器层是一些小规模的神经网络,通常由一个下采样层(减少维度)、一个激活函数(如 ReLU)和一个上采样层(恢复维度)组成。
冻结预训练权重: 在微调过程中,预训练模型的原始权重保持不变,仅训练适配器层的权重。
高效微调: 由于适配器层的参数数量相对较少,微调过程变得更加高效。适配器层可以针对不同任务进行训练,而不影响预训练模型的核心结构。
Prompt Tuning
- 论文题目:The Power of Scale for Parameter-Efficient Prompt Tuning
- 论文链接:https://arxiv.org/pdf/2104.08691
- 发表时间:2021.9.2

含义
在预训练语言模型的输入中添加可学习的嵌入向量作为提示。其核心思想是通过引入任务特定的提示(prompts),而非对整个模型进行全参数更新,从而实现对模型的高效微调
原理
设计提示词: 输入提示(prompt)通常包含任务描述、示例或特定的输入格式。例如,对于情感分类任务,可以设计一个提示词:“这段文字的情感是:”。
优化提示词: Prompt Tuning 的优化对象是输入提示的词嵌入(embedding)。通过梯度下降等优化算法,调整提示词的词嵌入,使得模型在特定任务上的表现达到最优。
冻结预训练模型: 在 Prompt Tuning 中,预训练模型的权重保持不变,仅优化提示词的嵌入。
Prefix-Tuning
- 论文题目:Prefix-Tuning: Optimizing Continuous Prompts for Generation
- 论文链接:https://arxiv.org/pdf/2101.00190
- 发表时间:2021.1.1

含义
通过固定预训练模型的参数,仅在输入序列的前面添加一个可训练的前缀(prefix),从而在不改变模型参数的情况下实现特定任务的适应
原理
固定模型参数: 不对预训练语言模型(如 GPT-3、BERT 等)的参数进行微调
添加可训练前缀: 在输入序列的前面添加一个可训练的前缀向量。这个前缀向量的长度和维度可以根据具体任务进行调整
任务适应: 在实际应用中,前缀向量与输入序列一起输入到预训练模型中。由于前缀向量是可训练的,模型可以通过调整前缀向量来适应特定的任务,而无需改变模型本身的参数。
P-Tuning
-
论文题目:GPT Understands, Too
-
论文链接:https://arxiv.org/pdf/2103.10385v1
-
发表时间:2021.3.18

含义
在模型输入中插入一些可训练的提示(prompts),这些提示是嵌入向量(embedding vectors),在训练过程中被优化
原理
固定模型参数: 和 Prefix-Tuning 类似,不改模型参数
插入可训练提示: 在输入序列的适当位置插入一些可训练的提示向量。
任务适应: 在训练过程中,这些提示向量与输入序列一起输入到预训练模型中
P-Tuning V2
- 论文题目:P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
- 论文链接:https://arxiv.org/pdf/2110.07602v2
- 发表时间:2021.10.18

含义
保留了 P-Tuning 的核心思想,即通过优化输入提示向量来引导预训练模型处理特定任务
原理
相比较于P-Tuning:
动态提示优化: 采用动态提示优化方法
多层提示插入: P-Tuning V2 不仅在输入序列的前面插入提示向量,还在模型的不同层次(如中间层)插入提示向量
BitFit
- 论文题目:BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models
- 论文链接:https://arxiv.org/abs/2106.10199
- 发表时间:2021.6.18

含义
通过仅微调模型的偏置参数来适应新的任务,从而减少了需要调整的参数量。
原理
-
原始 BERT 模型:包含多层 Transformer,每层有权重矩阵 W 和偏置 b。
-
BitFit 微调:保持所有权重矩阵 W 不变,只微调每层的偏置参数 b
DistilBERT
- 论文题目:DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter
- 论文链接:https://arxiv.org/abs/1910.01108
- 发表时间:2020.3.1

含义
使用知识蒸馏技术将大模型压缩成更小的模型,从而减少微调所需的计算资源和时间。
原理
知识蒸馏是一种模型压缩技术,通过训练一个较小的学生模型(student model)来模仿较大教师模型(teacher model)的行为。具体步骤如下:
- 教师模型:使用预训练的 BERT 模型作为教师模型。
- 学生模型:构建一个较小的 BERT 模型,即 DistilBERT。
- 训练过程:在训练过程中,学生模型通过模仿教师模型的输出来学习。损失函数不仅包括学生模型和教师模型输出之间的差异,还包括学生模型和真实标签之间的差异。
相关文章:
大模型微调:参数高效微调(PEFT)方法总结
PEFT (Parameter-Efficient Fine-Tuning) 参数高效微调是一种针对大模型微调的技术,旨在减少微调过程中需要调整的参数量,同时保持或提高模型的性能。 以LORA、Adapter Tuning 和 Prompt Tuning 为主的PEFT方法总结如下 LORA 论文题目:LORA:…...
Spark+实例解读
第一部分 Spark入门 学习教程:Spark 教程 | Spark 教程 Spark 集成了许多大数据工具,例如 Spark 可以处理任何 Hadoop 数据源,也能在 Hadoop 集群上执行。大数据业内有个共识认为,Spark 只是Hadoop MapReduce 的扩展(…...
WPF多语言国际化,中英文切换
通过切换资源文件的形式实现中英文一键切换 在项目中新建Language文件夹,添加资源字典(xaml文件),中文英文各一个。 在资源字典中写上想中英文切换的字符串,需要注意,必须指定key值,并且中英文…...
Halcon深度学习分类模型
1.Halcon20之后深度学习支持CPU训练模型,没有money买显卡的小伙伴有福了。但是缺点也很明显,就是训练速度超级慢,推理效果也没有GPU好,不过学习用足够。 2.分类模型是Halcon深度学习最简单的模型,可以用在物品分类&…...
洗地机哪种牌子好?洗地机排行榜前十名公布
洗地机市场上品牌琳琅满目,每个品牌都有其独特的魅力和优势。消费者在选择时,往往会根据自己的实际需求、预算以及对产品性能的期望来做出决策。因此,无论是哪个品牌的洗地机,只要能够满足用户的清洁需求,提供便捷的操…...
C++中的虚函数与多态机制如何工作?
在C中,虚函数和多态机制是实现面向对象编程的重要概念。 虚函数是在基类中声明的函数,可以在派生类中进行重写。当基类的指针或引用指向派生类的对象时,通过调用虚函数可以实现动态绑定,即在运行时确定要调用的函数。 多态是指通…...
《LeetCode热题100》---<哈希三道>
本篇博客讲解 LeetCode热题100道中的哈希篇中的三道题。分别是 1.第一道:两数之和(简单) 2.第二道:字母异位词分组(中等) 3.第三道:最长连续序列(中等) 第一道࿱…...
秒懂C++之string类(下)
目录 一.接口说明 1.1 erase 1.2 replace(最好别用) 1.3 find 1.4 substr 1.5 rfind 1.6 find_first_of 1.7 find_last_of 二.string类的模拟实现 2.1 构造 2.2 无参构造 2.3 析构 2.4.【】运算符 2.5 迭代器 2.6 打印 2.7 reserve扩容 …...
github简单地操作
1.调节字体大小 选择options 选择text 选择select 选择你需要的参数就可以了。 2.配置用户名和邮箱 桌面右键,选择git Bash Here git config --global user.name 用户名 git config --global user.email 邮箱名 3.用git实现代码管理的过程 下载别人的项目 git …...
模型改进-损失函数合集
模版 第一步在哪些地方做出修改: 228行 self.use_wiseiouTrue 230行 self.wiou_loss WiseIouLoss(ltypeMPDIoU, monotonousFalse, inner_iouTrue, focaler_iouFalse) 238行 wiou self.wiou_loss(pred_bboxes[fg_mask], target_bboxes[fg_mask], ret_iouFalse…...
C++模板(初阶)
1.引入 在之前的笔记中有提到:函数重载(特别是交换函数(Swap)的实现) void Swap(int& left, int& right) {int temp left;left right;right temp; } void Swap(double& left, double& right) {do…...
下面关于Date类的描述错误的一项是?
下面关于Date类的描述错误的一项是? A. java.util.Date类下有三个子类:java.sql.Date、java.sql.Timestamp、java.sql.Time; B. 利用SimpleDateFormat类可以对java.util.Date类进行格式化显示; C. 直接输出Date类对象就可以取得日…...
【Python面试题收录】Python编程基础练习题①(数据类型+函数+文件操作)
本文所有代码打包在Gitee仓库中https://gitee.com/wx114/Python-Interview-Questions 一、数据类型 第一题(str) 请编写一个Python程序,完成以下任务: 去除字符串开头和结尾的空格。使用逗号(","&#…...
C# Nmodbus,EasyModbusTCP读写操作
Nmodbus读写 两个Button控件分别为 读取和写入 分别使用控件的点击方法 ①引用第三方《NModbus4》2.1.0版本 全局 public SerialPort port new SerialPort("COM2", 9600, Parity.None, 8, (StopBits)1); ModbusSerialMaster master; public Form1() port.Open();…...
spark常用参数调优
目录 1.set spark.grouping.sets.reference.hivetrue;2.set spark.locality.wait.rack0s3.set spark.locality.wait0s;4.set spark.executor.memoryOverhead 2G;5.set spark.sql.shuffle.partitions 1000;6.set spark.shuffle.file.buffer 256k7. set spark.reducer.maxSizeInF…...
C#/WinFrom TCP通信+ 网线插拔检测+客服端异常掉线检测
Winfor Tcp通信(服务端) 今天给大家讲一下C# 关于Tcp 通信部分,这一块的教程网上一大堆,不过关于掉网,异常断开连接的这部分到是到是没有多少说明,有方法 不过基本上最多的两种方式(1.设置一个超时时间,2.…...
一篇文章掌握Python爬虫的80%
转载:一篇文章掌握Python爬虫的80% Python爬虫 Python 爬虫技术在数据采集和信息获取中有着广泛的应用。本文将带你掌握Python爬虫的核心知识,帮助你迅速成为一名爬虫高手。以下内容将涵盖爬虫的基本概念、常用库、核心技术和实战案例。 一、Python 爬虫…...
【用户会话信息在异步事件/线程池的传递】
用户会话信息在异步事件/线程池的传递 author:shengfq date:2024-07-29 version:1.0 背景: 同事写的一个代码功能,是在一个主线程中通过如下代码进行异步任务的执行,结果遇到了问题. 1.ThreadPool.execute(Runnable)启动一个子线程执行异步任务 2.applicationContext.publis…...
Java8: BigDecimal
Java8:BigDecimal 转两位小数的百分数-CSDN博客 BigDecimal 先做除法 然后取绝对值 在Java 8中,如果你想要对一个BigDecimal值进行除法操作,并随后取其绝对值,你可以通过组合divide方法和abs方法来实现这一目的。不过,需要注意的…...
苹果推送iOS 18.1带来Apple Intelligence预览
🦉 AI新闻 🚀 苹果推送iOS 18.1带来Apple Intelligence预览 摘要:苹果向iPhone和iPad用户推送iOS 18.1和iPadOS 18.1开发者预览版Beta更新,带来“Apple Intelligence”预览。目前仅支持M1芯片或更高版本的设备。Apple Intellige…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...
