whisper+whisperx ASR加对齐
忘了怎么安装了,这里记录一下整理出来的类,不过这个
from chj.comm.pic import *import json
import whisper
import whisperx
import gcclass Warp_whisper:def __init__(self, language="zh", device="cuda", compute_type="float32", model="large-v2" ):torch.backends.cudnn.enabled = Falseif not torch.cuda.is_available():device="cpu"dmodel="XXXXX/models/torch/whisper"self.asr_model=whisper.load_model(model, device, download_root=dmodel)self.txt_converter = Noneif model=="large-v2" and language=="zh":from opencc import OpenCCconverter = OpenCC('t2s')self.txt_converter = converterself.prompt=Noneelse:if language=="zh":self.prompt='以下是普通话的句子'else:self.prompt=Noneself.prompt=Noneself.language=languageself.device=deviceself.align_model, self.align_metadata = whisperx.load_align_model(language_code=language, device=device)def do_asr_algin(self, fjson, fwav):audio = whisper.load_audio(fwav)result = self.asr_model.transcribe(audio, language=self.language, initial_prompt=self.prompt)#assert result["language"] == self.languageresult_segments = result["segments"]if self.txt_converter:for e in result_segments:e['text'] = converter.convert( e['text'] )result = whisperx.align(result_segments, self.align_model, self.align_metadata, audio, self.device, return_char_alignments=False)result=result["segments"]with open(fjson, "w") as fout:json.dump(result, fout, indent=4, ensure_ascii=False)def f2_invoke():print("Doing... whisper align")basedir=sys.argv[1]din=f"{basedir}/audio_feats/wav16k"if not os.path.exists(din):print("no such dir", din)exit(1)dout=f"{basedir}/audio_feats/whisper_align"cls_asr=Warp_whisper()chj_file.mkdir(dout)for fwav in tqdm( glob.glob(f"{din}/*.wav") ):nm = chj_file.get_nm(fwav)fnm=f"{dout}/{nm}.json"if os.path.isfile(fnm): continuecls_asr.do_asr_algin(fnm,fwav)print("Finished whisper align")
相关文章:
whisper+whisperx ASR加对齐
忘了怎么安装了,这里记录一下整理出来的类,不过这个 from chj.comm.pic import *import json import whisper import whisperx import gcclass Warp_whisper:def __init__(self, language"zh", device"cuda", compute_type"fl…...

【已解决】YOLOv8加载模型报错:super().__init__(torch._C.PyTorchFileReader(name_or_buffer))
《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 《------往期经典推…...

中国象棋 纯网页前端 演示与下载
https://andi.cn/app/chess/...
学习大数据DAY29 python基础语法2
目录 调试---debug tuple(元组) set(集合) dict(字典) 转换 推导式 上机练习 3 函数 参数 不定长参数 值传递与引用传递 局部和全局变量 上机练习 4 调试---debug 1. 先设置断点 2. 点击调试…...

自动化测试常用函数(Java方向)
目录 一、元素的定位 1.1 cssSelector 1.2 xpath 1.2.1 获取HTML页面所有的节点 1.2.2 获取HTML页面指定的节点 1.2.3 获取⼀个节点中的直接子节点 1.2.4 获取⼀个节点的父节点 1.2.5 实现节点属性的匹配 1.2.6 使用指定索引的方式获取对应的节点内容 二、操作测试对…...

申瓯通信设备有限公司在线录音管理系统(复现过程)
漏洞简介 申瓯通信设备有限公司在线录音管理系统 index.php接口处存在任意文件读取漏洞,恶意攻击者可能利用该漏洞读取服务器上的敏感文件,例如客户记录、财务数据或源代码,导致数据泄露 一.复现过程 fofa搜索语句:title"在线录音管…...

【C++进阶学习】第十一弹——C++11(上)——右值引用和移动语义
前言: 前面我们已经将C的重点语法讲的大差不差了,但是在C11版本之后,又出来了很多新的语法,其中有一些作用还是非常大的,今天我们就先来学习其中一个很重要的点——右值引用以及它所扩展的移动定义 目录 一、左值引用和…...
JavaScript 监听 localStorage 的变化
使用 JavaScript 监听 localStorage 的变化 在Web开发中,localStorage是一种非常常用的本地存储机制。它允许我们在浏览器中存储键值对数据,即使用户关闭了浏览器或刷新页面,数据也不会丢失。但是,有时我们需要实时监控 localStorage 的变化,以便能够及时做出响应。在本文中,我…...
Java 中 HashMap 和 Hashtable 的联系
目录 相同 不同 1. 继承的父类不同 2. 线程安全性不同 3. 包含的 contains 方法不同 4. toString方法不同 5. 是否允许null值不同 6. 计算hash值的方式不同 7. 计算索引位置的方法不同 8. 初始化容量不同 9. 扩容方式不同 10. 内部存储策略不同(此处讨论…...
Web3 开发教程
引言 Web3 是指第三代互联网,其核心特征之一是去中心化。通过区块链技术和智能合约,Web3 应用程序(dApps)能够在无需中心化服务器的情况下运行。本文将引导你完成一个简单的 Web3 应用程序的开发过程,包括环境搭建、智…...

傻瓜式PHP-Webshell免杀学习手册,零基础小白也能看懂
项目描述 一、PHP相关资料 PHP官方手册: https://www.php.net/manual/zh/ PHP函数参考: https://www.php.net/manual/zh/funcref.php 菜鸟教程: https://www.runoob.com/php/php-tutorial.html w3school: https://www.w3school…...

第十九次(安装nginx代理tomcat)
回顾 1.安装nodejs---jdk一样你的软件运行环境 yum -y list install|grep epel $? yum -y install nodejs #版本号 node -v 2.下载对应的nodejs软件npm yum -y install npm npm -v npm set config ...淘宝镜像 3.安装vue/cli command line interface 命令行接口 npm ins…...

小红书0510笔试-选择题
Cache-Control:这是一个用于定义缓存行为的头部字段,它可以设定多个值来控制缓存的各个方面,如“public”、“private”、“no-cache”、“max-age”等。虽然Cache-Control的max-age指令可以指定缓存项的有效期,但它并不直接标识资…...

3.Java面试题之AQS
1. 写在前面 AQS(AbstractQueuedSynchronizer)是Java并发包(java.util.concurrent)中的一个抽象类,用于实现同步器(如锁、信号量、栅栏等)。AQS提供了一种基于FIFO队列的机制来管理线程的竞争和…...

redis的集群(高可用)
redis集群的三种模式: 主从复制 奇数 三台 一主两从 哨兵模式 3 一主两从 cluster集群 六台 主从复制:和mysql的主从复制类似,主可以写,写入主的数据通过RDB方式把数据同步到从服务器,从不能更新到主,也…...
随机森林的算法
1、随机森林算法简介 随机森林算法(Random Forests)是LeoBreiman于2001年提出的,它是一种通过重采样办法从原始训练样本集中有放回地重复随机抽取若干个样本生成多个决策树,样本的最终预测值由这些决策树的结果投票决定的一种有监督集成学习模型。 其核…...

3.1、数据结构-线性表
数据结构 数据结构线性结构线性表顺序存储和链式存储区别单链表的插入和删除练习题 栈和队列练习题 串(了解) 数据结构 数据结构该章节非常重要,上午每年都会考10-12分选择题下午一个大题 什么叫数据结构?我们首先来理解一下什…...

记一次对HTB:Carpediem的渗透测试
信息收集 端口扫描 通过nmap对靶机端口进行探测,发现存在22和80端口。 访问web页面。发现是一个静态页面,没有可利用的部分。 目录扫描 子域枚举 通过对域名进行fuzz子域名,发现存在portal一级域名。 将它加入/etc/hosts,访问之…...

MATH2 数据集:AI辅助生成高挑战性的数学题目
随着大型语言模型(LLMs)在理解和生成复杂数学内容方面的能力显著提高,通过利用所有公开数据以及相当一部分私有数据,已经取得了进展。然而,高质量、多样化和具有挑战性的数学问题来源正在逐渐枯竭。即使是寻找新的评估…...

加密货币“蓄势待发”!美国松口降息!九月开始连续降息8次?2025年利率目标3.25-3.5%?
今晨,美国联准会(Fed)结束FOMC会议,一如市场预期第八度冻涨利率在5.25%-5.5%。不过主席鲍威尔(Jerome Powell)在会后的记者会访出鸽派讯号,暗示9月降息脚步将近。这一消息令金融市场顿时沸腾,美股全面大涨&…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...
深入解析 ReentrantLock:原理、公平锁与非公平锁的较量
ReentrantLock 是 Java 中 java.util.concurrent.locks 包下的一个重要类,用于实现线程同步,支持可重入性,并且可以选择公平锁或非公平锁的实现方式。下面将详细介绍 ReentrantLock 的实现原理以及公平锁和非公平锁的区别。 ReentrantLock 实现原理 基本架构 ReentrantLo…...

英国云服务器上安装宝塔面板(BT Panel)
在英国云服务器上安装宝塔面板(BT Panel) 是完全可行的,尤其适合需要远程管理Linux服务器、快速部署网站、数据库、FTP、SSL证书等服务的用户。宝塔面板以其可视化操作界面和强大的功能广受国内用户欢迎,虽然官方主要面向中国大陆…...
【Java基础】向上转型(Upcasting)和向下转型(Downcasting)
在面向对象编程中,转型(Casting) 是指改变对象的引用类型,主要涉及 继承关系 和 多态。 向上转型(Upcasting) ⬆️ 定义 将 子类对象 赋值给 父类引用(自动完成,无需强制转换&…...
Python打卡训练营学习记录Day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...