当前位置: 首页 > news >正文

Spark了解

目录

1 概述

 2 发展

3 Spark和Hadoop

4 Spark核心模块


1 概述

        Apache Spark是一个快速、通用、可扩展的分布式计算系统,最初由加州大学伯克利分校的AMPLab开发。

        Spark可以处理大规模数据处理任务,包括批处理、迭代式算法、交互式查询和流处理等。Spark支持多种编程语言,包括Java、Scala、Python和R等。Spark的核心概念是弹性分布式数据集(Resilient Distributed Dataset,简称RDD),它是一个分布式的内存抽象,可以让开发者在内存中高效地处理数据。

        Spark还提供了许多高级工具,包括Spark SQLSpark StreamingMLlib(机器学习库)GraphX(图处理库),这些工具可以让开发者更方便地处理数据和构建分布式应用程序。

  • Spark 是一种由 Scala 语言开发的快速、通用、可扩展的大数据分析引擎
  • Spark Core 中提供了 Spark 最基础与最核心的功能
  • Spark SQL 是Spark 用来操作结构化数据的组件。通过 Spark SQL,用户可以使用SQL 或者 Apache Hive 版本的 SQL 方言(HQL)来查询数据。
  • Spark Streaming 是 Spark 平台上针对实时数据进行流式计算的组件,提供了丰富的处理数据流的API。

 2 发展

  • 2009 年,Spark 诞生于伯克利大学的AMPLab 实验室
  • 2010 年,伯克利大学正式开源了 Spark 项目
  • 2013 6 月,Spark 成为了 Apache 基金会下的项目
  • 2014 年 2 月,Spark 以飞快的速度成为了 Apache 的顶级项目
  • 2015 年至今,Spark 变得愈发火爆,大量的国内公司开始重点部署或者使用 Spark

3 Spark和Hadoop

 

Hadoop 的 MR 框架和Spark 框架都是数据处理框架,那么我们在使用时如何选择?

  • Hadoop MapReduce 由于其设计初衷并不是为了满足循环迭代式数据流处理,因此在多并行运行的数据可复用场景(如:机器学习、图挖掘算法、交互式数据挖掘算法)中存在诸多计算效率等问题。所以 Spark 应运而生,Spark 就是在传统的MapReduce 计算框架的基础上,利用其计算过程的优化,从而大大加快了数据分析、挖掘的运行和读写速度,并将计算单元缩小到更适合并行计算和重复使用的RDD 计算模型。

  • 机器学习中 ALS、凸优化梯度下降等。这些都需要基于数据集或者数据集的衍生数据反复查询反复操作。MR 这种模式不太合适,即使多 MR 串行处理,性能和时间也是一个问题。数据的共享依赖于磁盘。另外一种是交互式数据挖掘,MR 显然不擅长。而Spark 所基于的 scala 语言恰恰擅长函数的处理。
  • Spark 是一个分布式数据快速分析项目。它的核心技术是弹性分布式数据集(Resilient Distributed Datasets),提供了比MapReduce 丰富的模型,可以快速在内存中对数据集进行多次迭代,来支持复杂的数据挖掘算法和图形计算算法。
  • Spark Hadoop 的根本差异是多个作业之间的数据通信问题 : Spark 多个作业之间数通信是基于内存,而 Hadoop 是基于磁盘。
  • Spark  Task 的启动时间快。Spark 采用 fork 线程的方式,而 Hadoop 采用创建新的进程的方式。
  • Spark 只有在 shuffle 的时候将数据写入磁盘,而 Hadoop 中多个 MR 作业之间的数据交互都要依赖于磁盘交互
  • Spark 的缓存机制比HDFS 的缓存机制高效。

经过上面的比较,可以看出在绝大多数的数据计算场景中,Spark 确实会比 MapReduce 更有优势。但是Spark 是基于内存的,所以在实际的生产环境中,由于内存的限制,可能会由于内存资源不够导致 Job 执行失败,此时,MapReduce 其实是一个更好的选择,所以 Spark 并不能完全替代 MR

4 Spark核心模块

 

  • Spark Core

Spark Core 中提供了 Spark 最基础与最核心的功能,Spark 其他的功能如:Spark SQL, Spark Streaming,GraphX, MLlib 都是在 Spark Core 的基础上进行扩展的

  • Spark SQL

Spark SQL 是Spark 用来操作结构化数据的组件。通过 Spark SQL,用户可以使用 SQL或者Apache Hive 版本的 SQL 方言(HQL)来查询数据。

  • Spark Streaming

Spark Streaming 是 Spark 平台上针对实时数据进行流式计算的组件,提供了丰富的处理数据流的API。

  • Spark MLlib

MLlib 是 Spark 提供的一个机器学习算法库。MLlib 不仅提供了模型评估、数据导入等额外的功能,还提供了一些更底层的机器学习原语。

  • Spark GraphX

GraphX 是 Spark 面向图计算提供的框架与算法库。

 

相关文章:

Spark了解

目录 1 概述 2 发展 3 Spark和Hadoop 4 Spark核心模块 1 概述 Apache Spark是一个快速、通用、可扩展的分布式计算系统,最初由加州大学伯克利分校的AMPLab开发。 Spark可以处理大规模数据处理任务,包括批处理、迭代式算法、交互式查询和流处理等。Spa…...

c++STL急急急

文章目录cSTL急急急vector头文件扩容过程用法:size/emptyclear迭代器begin/endfront/backpush_back() 和 pop_back()queue头文件用法循环队列 queue用法优先队列 priority_queue用法stack头文件deque头文件deque中控器:用法set头文件用法迭代器begin/end…...

【C++学习】模板进阶——非类型模板参数 | 模板的特化 | 分离编译

🐱作者:一只大喵咪1201 🐱专栏:《C学习》 🔥格言:你只管努力,剩下的交给时间! 模板我们之前一直都在使用,尤其是在模拟STL容器的时候,可以说,模板…...

【C++】C++11新特性——可变参数模板|function|bind

文章目录一、可变参数模板1.1 可变参数的函数模板1.2 递归函数方式展开参数包1.3 逗号表达式展开参数包1.4 empalce相关接口函数二、包装器function2.1 function用法2.2 例题:逆波兰表达式求值2.3 验证三、绑定函数bind3.1 调整参数顺序3.2 固定绑定参数一、可变参数…...

ssm框架之spring:浅聊事务--JdbcTemplate

简介 JdbcTemplate 是 Spring 对 JDBC 的封装,目的是使JDBC更加易于使用,JdbcTemplate是Spring的一部分。JdbcTemplate 处理了资源的建立和释放,它帮助我们避免一些常见的错误,比如忘了总要关闭连接。他运行核心的JDBC工作流&…...

盘点Python那些简单实用的第三方库

文章目录前言关于本文使用 pip 命令下载第三方库1、phone 库(获取手机号码信息)2、geoip2 库(IP 检测功能)3、freegames 库(免费小游戏)4、jionlp 库(解析地址信息)5、pyqrcode 库&a…...

leetCode热题21-26 解题代码,调试代码和思路

前言 本文属于特定的六道题目题解和调试代码。 1 ✔ [160]相交链表 Easy 2023-03-17 171 2 ✔ [54]螺旋矩阵 Medium 2023-03-17 169 3 ✔ [23]合并K个排序链表 Hard 2022-12-08 158 4 ✔ [92]反转链表 II Medium 2023-03-01 155 5 ✔ [415]字符串相加 Easy 2023-03-14 150 6 …...

ChatGPT推出第四代GPT-4!不仅能聊天,还可以图片创作!

3月15日凌晨,OpenAI震撼发布了多模态预训练大模型 GPT-4。 根据官网发布的通告可以知道,GPT-4 实现了以下几个方面的飞跃式提升:强大的AI创作识图能力;文字输入限制提升至 2.5 万字;回答准确性显著提高;能够…...

二叉搜索树:AVL平衡

文章目录一、 二叉搜索树1.1 概念1.2 操作1.3 代码实现二、二叉搜索树的应用K模型和KV模型三、二叉搜索树的性能分析四、AVL树4.1 AVL树的概念4.2 AVL树的实现原理4.3 旋转4.4 AVL树最终代码一、 二叉搜索树 1.1 概念 二叉搜索树( Binary Search Tree,…...

数据结构和算法(1):数组

目录概述动态数组二维数组局部性原理越界检查概述 定义 在计算机科学中,数组是由一组元素(值或变量)组成的数据结构,每个元素有至少一个索引或键来标识 In computer science, an array is a data structure consisting of a col…...

python+django+vue全家桶鲜花商城售卖系统

重点: (1) 网上花店网站中各模块功能之间的的串联。 (2) 网上花店网站前台与后台的连接与同步。 (3) 鲜花信息管理模块中鲜花的发布、更新与删除。 (4) 订单…...

一文带你领略 WPA3-SAE 的 “安全感”

引入 WPA3-SAE也是针对四次握手的协议。 四次握手是 AP (authenticator) 和 (supplicant)进行四次信息交互,生成一个用于加密无线数据的秘钥。 这个过程发生在 WIFI 连接 的 过程。 为了更好的阐述 WPA3-SAE 的作用 …...

Python解题 - CSDN周赛第38期

又来拯救公主了。。。本期四道题还是都考过,而且后面两道问哥在以前写的题解里给出了详细的代码(当然是python版),直接复制粘贴就可以过了——尽管这样显得有失公允,考虑到以后还会出现重复的考题,所以现在…...

Android绘制——自定义view之onLayout

简介 在自定义view的时候,其实很简单,只需要知道3步骤: 测量——onMeasure():决定View的大小,关于此请阅读《Android自定义控件之onMeasure》布局——onLayout():决定View在ViewGroup中的位置绘制——onD…...

用Qt画一个温度计

示例1 以下是用Qt绘制一个简单的温度计的示例代码&#xff1a; #include <QPainter> #include <QWidget> #include <QApplication> class Thermometer : public QWidget { public:Thermometer(QWidget *parent 0); protected:void paintEvent(QPaintEvent …...

Java设计模式 04-建造者模式

建造者模式 一、 盖房项目需求 1)需要建房子&#xff1a;这一过程为打桩、砌墙、封顶 2)房子有各种各样的&#xff0c;比如普通房&#xff0c;高楼&#xff0c;别墅&#xff0c;各种房子的过程虽然一样&#xff0c;但是要求不要相同的. 3)请编写程序&#xff0c;完成需求. …...

安语未公告于2023年3月20日发布

因一些特殊原因&#xff0c;凡事都是有开始&#xff0c;高潮和结束三大过程&#xff0c;做出以下决定&#xff1a; 所有对 安语未文章 为之热爱、鞭策、奉献&#xff0c;和支持过的开发者&#xff1a; 注&#xff1a;所有资源以及资料都会正常下载和查看 如需联系&#xff1…...

进销存是什么?如何选择进销存系统?

什么是进销存&#xff1f;进销存软件概念起源于上世纪80年代&#xff0c;由于电算化的普及&#xff0c;计算机管理的推广&#xff0c;不少企业对于仓库货品的进货&#xff0c;存货&#xff0c;出货管理&#xff0c;有了强烈的需求&#xff0c;进销存软件的发展从此开始。 进入…...

基于BP神经网络的图像跟踪,基于BP神经网络的细胞追踪识别

目录 摘要 BP神经网络的原理 BP神经网络的定义 BP神经网络的基本结构 BP神经网络的神经元 BP神经网络激活函数及公式 基于BP神经网络的细胞识别追踪 matab编程代码 效果 结果分析 展望 摘要 智能驾驶,智能出行是现代社会发展的趋势之一,其中,客量预测对智能出行至关重要,…...

Java面试总结篇

引用介绍 1.线程安全不安全的概念 ​ 线程安全: 指多个线程在执行同一段代码的时候采用加锁机制,使每次的执行结果和单线程执行的结果都是一样的,不存在执行程序时出现意外结果。 ​ 线程不安全: 是指不提供加锁机制保护,有可能出现多个线程先后更改数据造成所得到的数据是脏…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1&#xff09;准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2&#xff09;服务端安装软件&#xff1a;bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存&#xff1a;一级缓存、二级缓存 默认情况下&#xff0c;只有一级缓存开启&#xff08;sqlSession级别的缓存&#xff09;二级缓存需要手动开启配置&#xff0c;需要局域namespace级别的缓存 一级缓存&#xff08;本地缓存&#…...

spring Security对RBAC及其ABAC的支持使用

RBAC (基于角色的访问控制) RBAC (Role-Based Access Control) 是 Spring Security 中最常用的权限模型&#xff0c;它将权限分配给角色&#xff0c;再将角色分配给用户。 RBAC 核心实现 1. 数据库设计 users roles permissions ------- ------…...