2023美赛C题【分析思路+代码】
以下内容为我个人的想法与实现,不代表任何其他人。
文章目录
- 问题一
- 数据预处理
- 时间序列模型
- 创建预测区间
- 单词的任何属性是否影响报告的百分比?如果是,如何影响?如果不是,为什么不是?
- 问题二
- 问题三
- 难度评估
- 模型简历与预测
- 问题四分类分析
问题一
为了对报告结果数量的变化进行建模,我们需要确定影响这种变化的潜在因素。可能影响报告结果数量的几个可能因素包括:
数据预处理
读取适当修整的数据集:
import pandas as pddata=pd.read_excel('Problem_C.xlsx')data# 日期 比赛编号 单词 报告结果数量 困难模式中的数量 尝试次数
如下:

查看数据集的基本信息
# 查看数据集的基本信息
print(data.info())
# 可见没有缺失值
如下:

由于同一个日期可能有多条数据,所以统计每个日期的报告结果数量:
# 统计每个日期的报告结果数量
results_by_date = data.groupby('Date')['Number_of_reported_results'].sum()
print(results_by_date)
如下:

统计每个单词的平均猜测次数:
# 统计每个单词的平均猜测次数
avg_guesses_by_word = data[['Word', '1_try', '2_tries', '3_tries', '4_tries', '5_tries', '6_tries', 'more']].mean(axis=1)
print(avg_guesses_by_word)
如下(可见差不多):

检查单词长度是否与平均猜测次数有关:
# 检查单词长度是否与平均猜测次数有关
data['Word length'] = data['Word'].apply(len)
avg_guesses_by_word_length = data.groupby('Word length')[['1_try', '2_tries', '3_tries', '4_tries', '5_tries', '6_tries', 'more']].mean()
avg_guesses_by_word_length# 说明还是有关系
如下(结果可以看出是有关系的):

下面做个热力图看看上述特征之间关系:
corr=avg_guesses_by_word_length.corr()import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pdplt.subplots(figsize = (10,10))
plt.title("Pearson correlation with label")
sns.heatmap(corr, annot=True, vmax=1, square=True, cmap="Oranges")
如下:

可视化每天报告数量:
# 可视化每天报告数量
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.arima.model import ARIMA
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error# 提取每天的报告结果数量
results_by_date = data.groupby('Date')['Number_in_hard_mode'].sum()# 绘制时间序列图
plt.plot(results_by_date)
plt.title('Daily Wordle Results')
plt.xlabel('Date')
plt.ylabel('Number of reported results')
plt.show()
如下:

时间序列模型
ARIMA时间序列模型如下:
# 拆分数据集为训练集和测试集
train, test = train_test_split(results_by_date, test_size=0.2, shuffle=False)# 建立ARIMA模型并训练
model = ARIMA(train, order=(3, 1, 1))
model_fit = model.fit()# 对测试集进行预测并计算误差
history = [x for x in train]
predictions = list()
for t in range(len(test)):model = ARIMA(history, order=(3, 1, 1))model_fit = model.fit()output = model_fit.forecast()yhat = output[0]predictions.append(yhat)obs = test.iloc[t]history.append(obs)RMSE_test = np.sqrt(mean_squared_error(test, predictions))
print("Test RMSE: {}".format(RMSE_test))# 绘制预测结果和实际结果的比较图
plt.plot(test.index, test.values, label='Actual')
plt.plot(test.index, predictions, label='Predicted')
plt.title('Daily Wordle Results')
plt.xlabel('Date')
plt.ylabel('Number of reported results')
plt.legend()
plt.show()
运行如下:

我们计算每天的报告结果数量,并绘制时间序列图来检查数据是否具有某种趋势或周期性。接下来,我们将数据集拆分为训练集和测试集,并建立一个ARIMA模型来训练数据集。在训练模型后,我们对测试集进行预测并计算误差,然后绘制预测结果和实际结果的比较图来评估模型的性能。从上图可以看出,我们的模型表现已经很好。
创建预测区间
2023年3月1日报告的结果数量创建预测区间。首先预测当天值:
import matplotlib.pyplot as plt# 对未来数据进行预测
forecast = model_fit.forecast(steps=30)# 提取2023年3月1日的预测值和置信区间
forecast_value = forecast[0]# 打印预测值
print('2023年3月1日的预测值为:%.2f' % forecast_value)
如下:
2023年3月1日的预测值为:1956.95
均方误差MSE通过计算预测值和实际值之间距离(即误差)的平方来衡量模型优劣。即预测值和真实值越接近,两者的均方差就越小。MSE的值越小,说明预测模型描述实验数据具有更好的精确度。所以我们可以用均方误差来设置上下限。
# 计算区间
print(f"预测区间是[{int(forecast_value-RMSE_test)}至{int(forecast_value+int(RMSE_test))}]")
如下:
预测区间是[1726至2186]
单词的任何属性是否影响报告的百分比?如果是,如何影响?如果不是,为什么不是?
用于计算每个单词出现的次数和平均报告百分比,以及每个单词的平均报告百分比的标准偏差和方差。该这里使用箱线图和散点图来可视化单词出现次数和平均报告百分比之间的关系:
# 计算每个单词的出现次数和平均报告百分比
word_counts = data.groupby('Word').size()
word_means = data.groupby('Word')['1_try', '2_tries', '3_tries', '4_tries', '5_tries', '6_tries', 'more'].mean()# 计算每个单词的平均报告百分比的标准偏差和方差
word_stds = data.groupby('Word')['1_try', '2_tries', '3_tries', '4_tries', '5_tries', '6_tries', 'more'].std()
word_vars = data.groupby('Word')['1_try', '2_tries', '3_tries', '4_tries', '5_tries', '6_tries', 'more'].var()# 将单词的出现次数和平均报告百分比合并为一个数据框
word_data = pd.concat([word_counts, word_means, word_stds, word_vars], axis=1)
word_data.columns = ['Count', '1 try Mean', '2 tries Mean', '3 tries Mean', '4 tries Mean', '5 tries Mean', '6 tries Mean', 'X Mean', '1 try Std', '2 tries Std', '3 tries Std', '4 tries Std', '5 tries Std', '6 tries Std', 'X Std', '1 try Var', '2 tries Var', '3 tries Var', '4 tries Var', '5 tries Var', '6 tries Var', 'X Var']# 将单词的出现次数和平均报告百分比之间的关系可视化
plt.scatter(word_data['Count'], word_data['X Mean'])
plt.title('Relationship between Word Frequency and X Mean')
plt.xlabel('Word Frequency')
plt.ylabel('X Mean')
plt.show()# 绘制平均报告百分比的箱线图
word_data[['1 try Mean', '2 tries Mean', '3 tries Mean', '4 tries Mean', '5 tries Mean', '6 tries Mean', 'X Mean']].plot.box()
plt.title('Distribution of Report Percentages by Number of Tries')
plt.ylabel('Report Percentage')
plt.show()
如下:


第一个图表是单词出现次数和平均报告百分比之间的散点图,可以帮助我们了解它们之间是否存在任何明显的关系。第二个图表是平均报告百分比的箱线图,可以帮助我们了解不同尝试次数下的报告百分比分布情况。
通过观察这些图表,我们可以得出以下结论:
- 单词出现次数和平均报告百分比之间没有明显的关系,因此单词的任何属性都不会影响报告的百分比。
- 报告百分比在不同的尝试次数下具有不同的分布,随着尝试次数的增加,平均报告百分比显著提高,这也是Wordle游戏的规则所致。对于任何给定的单词,尝试次数越多,成功的概率就越高。
因此,可以得出结论:单词的任何属性都不会影响报告的百分比,而尝试次数是影响报告百分比的最重要因素。
在这个问题中,并没有对单词的具体属性进行分析,而是集中在单词出现次数和平均报告百分比之间的关系上。
问题二
对于未来日期的给定未来解决方案词,开发一个模型,使您能够预测报告结果的分布。换句话说,预测未来日期 (1, 2, 3, 4, 5, 6, X) 的相关百分比。哪些不确定性与您的模型和预测相关?举一个你对2023年3月1日EERIE这个词的预测的具体例子。你对你的模型的预测有多自信?
数据处理和分析,可视化数据集的分布和趋势
import matplotlib.pyplot as plt
import seaborn as sns# 按日期分组计算报告结果的平均值
df_mean = df.groupby('Date')['Number_of_reported_results'].mean()# 绘制时间序列图
plt.figure(figsize=(12, 6))
plt.plot(df_mean.index, df_mean.values)
plt.xlabel('Date')
plt.ylabel('Number_of_reported_results')
plt.title('Reported Results over Time')
plt.show()# 绘制散点图
sns.scatterplot(data=df, x='Contest number', y='Number_of_reported_results')
plt.xlabel('Contest number')
plt.ylabel('Number_of_reported_results')
plt.title('Reported Results by Contest number')
plt.show()# 绘制箱线图
sns.boxplot(data=df, x='Word', y='Number_of_reported_results')
plt.xlabel('Word')
plt.ylabel('Number_of_reported_results')
plt.title('Reported Results by Word')
plt.show()
如下:



实在难得写代码了,以下是最终预测结果:

由图可以看出,猜测次数占比集中在 3 次、4 次和 5 次,整体结果分布呈正态,侧面反映出了预测结果的可靠性。
问题三
假设我们要预测2023年3月1日给定单词EERIE的报告结果分布。给出一个具体的预测,以EERIE单词为例。首先,我们需要确定EERIE单词的长度(即需要多少次尝试才能猜中单词)。根据Wordle的规则,单词的长度在5到7之间,因此我们可以假设EERIE单词的长度为6。
import pandas as pd
import numpy as np
from scipy.stats import binom# 读取数据
data = pd.read_excel('Problem_C_Data_Wordle.xlsx')
使用这个模型,我们可以对EERIE单词进行难度分类。根据我们定义的难度级别,如果EERIE单词属于前10个最常见的单词,那么它可以被归为Easy级别;如果它属于接下来的10个单词,那么它可以被归为Medium级别;否则,它将被归为Hard级别。具体地,我们需要将EERIE单词的字母按照字母表的顺序排序,然后计算每个字母在单词中出现的频率。对于EERIE单词,它的字母排序为"EEEIR",频率为3/5、1/5、1/5、0、0。因此,我们可以将EERIE单词归为Easy级别。
难度评估
当然,这个模型的准确性取决于我们对每个难度级别的定义以及对每个因素的权重分配。如果我们对这些参数进行不同的选择,那么模型的分类结果可能会有所不同。同时,模型的准确性还受到数据质量的影响,如果我们的数据集不够完整或者存在错误,那么模型的分类结果也会受到影响
import pandas as pd
import numpy as np# 读取数据
data = pd.read_excel('Problem_C_Data_Wordle.xlsx')# 将单词按字母表顺序排序,并计算字母出现的频率
data['sorted_word'] = data['Word'].apply(lambda x: ''.join(sorted(x)))
data['freq_e'] = data['Word'].apply(lambda x: x.count('e') / len(x))
data['freq_t'] = data['Word'].apply(lambda x: x.count('t') / len(x))
data['freq_a'] = data['Word'].apply(lambda x: x.count('a') / len(x))
data['freq_o'] = data['Word'].apply(lambda x: x.count('o') / len(x))
data['freq_i'] = data['Word'].apply(lambda x: x.count('i') / len(x))
data['freq_n'] = data['Word'].apply(lambda x: x.count('n') / len(x))# 将单词按照字母频率排序,形成不同的难度级别
data['difficulty'] = 'hard'
data.loc[data['freq_e'] >= 0.2, 'difficulty'] = 'medium'
data.loc[data['freq_e'] >= 0.4, 'difficulty'] = 'easy'# 输出结果
data[['Word', 'sorted_word', 'freq_e', 'freq_t', 'freq_a', 'freq_o', 'freq_i', 'freq_n', 'difficulty']]
如下:

输出结果会列出每个单词的字母组合情况、字母出现的频率以及难度级别。根据我们的模型,难度级别为Easy的单词应该是比较容易的,而难度级别为Hard的单词则是比较困难的。在实际情况中,我们可以通过不断地观察Wordle游戏的结果,来验证我们的分类模型是否准确。
说明:
- 该代码仅计算字母“e”、“t”、“a”、“o”、“i”和“n”的频率,因为这些字母是英语中最常见的字母。根据各种研究和来源,这些字母在书面英语中出现的频率最高,因此它们的频率可以用作对单词难度的粗略估计。
- 例如,包含这些常见字母频率高的单词可能更容易猜到,而包含这些字母较少或更稀有字母的单词可能更难。
- 但是,这些字母的频率并不是影响单词难度的唯一因素。可能还有其他特征,例如单词的长度,某些字母组合或模式的存在,或单词与其他常用单词的相似性,也会影响单词的难度。若要构建更准确的分类模型,可能还需要考虑这些附加功能。
模型简历与预测
创建特征并提取特征:
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 读取数据
data = pd.read_excel('Problem_C_Data_Wordle.xlsx')# 提取特征
data['length'] = data['Word'].apply(len)
data['number_of_reported_results'] = data['Number_of_reported_results']
data['number_in_hard_mode'] = data['Number_in_hard _mode']
data['tries'] = data[['1_try', '2_try', '3_try', '4_try', '5_try', '6_try', 'X']].apply(lambda x: x.argmax()+1, axis=1)
data
如下:

划分数据集:
# 划分训练集和测试集
X = data[['length', 'number_of_reported_results', 'number_in_hard_mode', 'tries']]y = pd.get_dummies(data[['1_try','2_try','3_try','4_try','5_try','6_try','X']])
查看如下:

在多输出问题中,每个实例都有多个标签,并且每个标签可能有多个类别。例如,在 Wordle 的分类问题中,每个单词都可能被归为多个难度级别,因此属于多输出问题。
使用多输出决策树来分类(一个示例,并不唯一)
from sklearn.multioutput import MultiOutputClassifier
from sklearn import treeX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)X_train
如下:

训练预测和评估:
# 训练决策树模型
clf = MultiOutputClassifier(DecisionTreeClassifier())
clf.fit(X_train, y_train)# 预测测试集的结果
y_pred = clf.predict(X_test)
print('模型准确率为:',clf.score(X,np.array(y)))
如下:
模型准确率为: 0.7994428969359332
问题四分类分析
列出并描述此数据集的一些其他有趣的特征。
除了前面提到的单词长度、报告结果数量、困难模式和猜测次数等特征之外,这个 Wordle 数据集中还有一些其他有趣的特征可以挖掘。以下是一些可能有用的特征:
- 单词的字母种类和频率:不同的单词使用的字母种类和频率可能会有所不同,这些信息可能会对单词的难度和玩家的猜测次数产生影响。
- 每个字母的位置信息:每个单词中每个字母的位置信息可以用来计算不同字母之间的距离、频率和分布等特征,这些特征可能会对单词的难度和玩家的猜测次数产生影响。
- 每个单词的出现频率和难度级别:每个单词的出现频率和难度级别可以用来判断单词是否普遍使用和热门度,以及每个难度级别的单词特征和分布等信息。
- 玩家的胜率和猜测次数:可以将每个玩家在不同日期中的猜测次数和胜率等数据加入到数据集中,从而对玩家的猜测策略和技能水平等信息进行分析。
以下以计算每个单词的字母种类和频率为例:
import pandas as pd# 读取数据
data = pd.read_excel('Problem_C_Data_Wordle.xlsx')# 计算每个单词的字母种类和频率
def letter_counts(word):counts = {}for letter in word:if letter in counts:counts[letter] += 1else:counts[letter] = 1return countsdata['letter_counts'] = data['Word'].apply(letter_counts)
data['unique_letters'] = data['letter_counts'].apply(lambda x: len(x))
data['total_letters'] = data['letter_counts'].apply(lambda x: sum(x.values()))
data['most_common_letter'] = data['letter_counts'].apply(lambda x: max(x, key=x.get))# 输出结果
data[['Word', 'unique_letters', 'total_letters', 'most_common_letter']].head()
如下:

这里再做一个参考代码:根据单词的频率和难度级别确定单词的难度,可以修改我之前包含难度级别信息,代码如下
import pandas as pd# 读取数据
data = pd.read_excel('Problem_C_Data_Wordle.xlsx')# 计算每个单词的字母种类和频率
def letter_counts(word):counts = {}for letter in word:if letter in counts:counts[letter] += 1else:counts[letter] = 1return countsdata['letter_counts'] = data['Word'].apply(letter_counts)
data['unique_letters'] = data['letter_counts'].apply(lambda x: len(x))
data['total_letters'] = data['letter_counts'].apply(lambda x: sum(x.values()))
data['most_common_letter'] = data['letter_counts'].apply(lambda x: max(x, key=x.get))# 计算每个单词的出现频率
word_counts = data['Word'].value_counts(normalize=True)# 计算每个单词的难度级别
def word_difficulty(word):freq_e = word.count('e') / len(word)if freq_e >= 0.4:return 'easy'elif freq_e >= 0.2:return 'medium'else:return 'hard'data['difficulty'] = data['Word'].apply(word_difficulty)# 计算每个单词的难度分数
difficulty_scores = {'hard': 1, 'medium': 2, 'easy': 3}
data['difficulty_score'] = data['difficulty'].apply(lambda x: difficulty_scores[x])# 计算每个单词的加权出现频率
data['weighted_frequency'] = data['Word'].apply(lambda x: word_counts[x] * difficulty_scores[word_difficulty(x)])# 输出结果
data[['Word', 'unique_letters', 'total_letters', 'most_common_letter', 'difficulty', 'difficulty_score', 'weighted_frequency']].head()
如下:

说明:代码首先从 Excel 文件中读取数据,并像以前一样计算每个单词的各种特征。然后,它使用 value_counts() 方法计算每个单词的频率,并使用之前代码的修改版本计算每个单词的难度级别。它还为每个难度级别分配一个难度分数,难词的分数为 1,中等单词的分数为 2,简单单词的分数为 3。最后,它通过将频率乘以难度分数来计算每个单词的加权频率,并将结果分配给数据帧中名为“weighted_frequency”的新列。
相关文章:
2023美赛C题【分析思路+代码】
以下内容为我个人的想法与实现,不代表任何其他人。 文章目录问题一数据预处理时间序列模型创建预测区间单词的任何属性是否影响报告的百分比?如果是,如何影响?如果不是,为什么不是?问题二问题三难度评估模型…...
考研复试6 编译原理
第一章 编译器简介 1. 编译器的核心功能 把源代码翻译成目标代码 2. 编译器设计两个原则: 语义相同;以某种可察觉的方式改进输入程序 3. 编译器内部结构 前端:依赖于源语言,与目标机器无关。将输入的代码映射到 IR。包括分析部…...
uni-app:登录与支付--用户信息
用户信息 实现用户头像昵称区域的基本布局 在 my-userinfo 组件中,定义如下的 UI 结构: <template><view class"my-userinfo-container"><!-- 头像昵称区域 --><view class"top-box"><image src"…...
Docker 部署 MySQL
1. 进入下面路径下 -v 使用相对路径的方式挂载的目录docker会自动创建,路径为:/var/lib/docker/volumes/ cd /var/lib/docker/volumes/ 2. 指定版本5.7启动容器mysql docker run -p 3316:3306 --name mysql-master \ -v mysql-master-log:/var/log/mys…...
警惕,3月20日WOS目录更新,50本SCI/SSCI被剔除,这个出版社多达18本
2023年3月SCI、SSCI期刊目录更新 2023年3月20日,Web of Science核心期刊目录再次更新!此次2023年3月SCIE & SSCI期刊目录更新,与上次更新(2023年2月)相比,共有50本期刊被剔除出SCIE & SSCI期刊目录…...
【 Linux入门 】之 手搓 命令行解释器 bash(带源码)
目的基本结构提取输入命令fgets的使用命令初步处理命令的本质创建子进程重要知识补充进程替换命令处理简单 bash 完成及演示优化bashls颜色输出颜色实现cd命令ecport 命令envecho $echo $?目的 主要目的在于进一步了解 Linux 系统下使用进程相关的系统调用 及 shel…...
【运维】运维常用命令
shell大全读取文件每一行内容文件是否存在数组定义和循环取值变量循环流程控制语句:case判断数值相等/大于/小于判断字符串相等awk求和、平均、最大、最小sed用法exprbc计算器读取文件每一行内容 while read line doecho $line done < a.txt文件是否存在 if [ …...
MYSQL常用命令大全
文章目录 基本语句链接数据库显示已有数据库创建数据库选择数据库显示数据库中的表显示当前数据库的版本信息,链接用户名删除数据库创建表表 增加将查询结果插入到新表中:表 删除表 修改表 查询in子查询between ~ and ~ 模糊查询模糊查询regexp中的OR:多个信息查询同义词:删…...
锚点定位方案
一 背景知识: 1.1 #号的作用 #代表网页中的一个位置。其右面的字符,就是该位置的标识符。比如,http://www.example.com/index.html#print 就代表网页index.html的print位置。浏览器读取这个URL后,会自动将print位置滚动至可视区域。 为网页…...
Flink学习--第一章 初识Flink
Flink是Apache基金会旗下的一个开源大数据处理框架,如今已被很多人认为是大数据实时处理的方向和未来,许多公司也都在招聘和储备掌握Flink技术的人才。 1.1 Flink的源起和设计理念 Flink起源于一个叫作Stratosphere的项目,它是由3所地处柏林的…...
电脑技巧:常见的浏览器内核介绍
浏览器是大家日常使用电脑必备的软件,网上查资料、听音乐、办公等等,都不离不开浏览器给我们提供的方便,今天小编来给大家介绍一下常见的浏览器内核,一起来学习一下吧!1、Chromium 内核Google Chrom内核:统…...
【数据分析之道①】字符串
文章目录专栏导读1、字符串介绍2、访问字符串中的值3、字符串拼接4、转义字符5、字符串运算符6、字符串格式化7、字符串内置函数专栏导读 ✍ 作者简介:i阿极,CSDN Python领域新星创作者,专注于分享python领域知识。 ✍ 本文录入于《数据分析之…...
网络安全之防火墙
目录 网络安全之防火墙 路由交换终归结底是联通新设备 防御对象: 定义: 防火墙的区域划分: 包过滤防火墙 --- 访问控制列表技术 --- 三层技术 代理防火墙 --- 中间人技术 --- 应用层 状态防火墙 --- 会话追踪技术 --- 三层、四层 UTM …...
STM32之点亮一个LED小灯(轮询法)
目录 一、初始化GPIO口 二、按键点亮LED灯(轮询法) 一、初始化GPIO口 1、点亮LED小灯前,需要先初始化GPIO口 HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init) GPIO_TypeDef *GPIOx: //指初始化GPIO…...
pandas读CSV、读JSON、Excel
学习让我快乐 pandas的数据读取基本操作 pandas是Python中非常流行的数据处理库,它提供了许多强大的工具来读取、处理和分析数据。在本文中,我们将介绍pandas中的一些基本数据读取操作。 读取CSV文件 CSV文件是最常见的数据文件格式之一,p…...
企业站项目
企业站项目 一、项目实现结果 该项目共分为七大类:头部区域(logo图片、输入框)、导航区域、轮播图区域、内容区域、市场项目区域、产品中心区域、尾部区域 如图所示: http://企业站项目源码http://xn--vhquvo17e18gllbz7h2v9d …...
STM32开发(九)STM32F103 通信 —— I2C通信编程详解
文章目录一、基础知识点二、开发环境三、STM32CubeMX相关配置四、Vscode代码讲解GPIO模拟I2C代码SHT30相关代码main函数中循环代码五、结果演示方式一、示波器分析I2C数据方式2、通过Modbus将获取到的数据传到PC上一、基础知识点 本实验通过I2C通信获取SHT30温湿度值ÿ…...
手撕数据结构—栈
Tips不得不再次提一下这个语法问题,当数组创建的时候,进行初始化的时候,分为全部初始化或者说部分初始化,对于不完全初始化而言,剩下的部分就全部默认为零。现在比如说你想对整型数组的1万个元素把它全部变成-1&#x…...
【java刷题】排序子序列
这里写目录标题问题描述解决思路实现代码问题描述 牛牛定义排序子序列为一个数组中一段连续的子序列,并且这段子序列是非递增或者非递减排序的。牛牛有一个长度为n的整数数组A,他现在有一个任务是把数组A分为若干段排序子序列,牛牛想知道他最少可以把这个数组分为几段排序子序…...
Springboot怎么快速集成Mybatis和thymeleaf?
前言有时候做方案,需要模拟一些业务上的一些场景来验证方案的可行性,基本上每次都是到处百度如何集成springbootmybatisthymeleaf这些东西的集成平时基本上一年也用不了一次,虽然比较简单,奈何我真得记不住详细的每一步࿰…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权
摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题:安全。文章将详细阐述认证(Authentication) 与授权(Authorization的核心概念,对比传统 Session-Cookie 与现代 JWT(JS…...
路由基础-路由表
本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中,往往存在多个不同的IP网段,数据在不同的IP网段之间交互是需要借助三层设备的,这些设备具备路由能力,能够实现数据的跨网段转发。 路由是数据通信网络中最基…...
拟合问题处理
在机器学习中,核心任务通常围绕模型训练和性能提升展开,但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正: 一、机器学习的核心任务框架 机…...
