当前位置: 首页 > news >正文

【2024年华数杯C题老外游中国】(完整题解+代码+完整参考论文)

请问 352 个城市中所有 35200 个景点评分的最高分(Best Score,简称 BS)是多少?全国有多少个景点获评了这个最高评分(BS)?获评了这个最高评分(BS)景点最多的城市有哪些?依据拥有最高评分(BS)景点数量的多少排序,列出前 10 个城市。
:数据准备
解题步骤
读取所有城市的景点评分数据:
我们需要将所有城市的 CSV 文件合并到一个 DataFrame 中。
计算最高评分(BS):
从合并后的 DataFrame 中找出所有景点评分的最高分。
统计获得最高评分的景点数量:
统计每个城市中获得最高评分的景点数量,并找出这些城市中获得最多的前 10 个城市。

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as pltdef generate_mock_data(num_cities=352, num_sights_per_city=100):data = []for city_id in range(1, num_cities + 1):for sight_id in range(1, num_sights_per_city + 1):data.append({'city_id': city_id,'sight_name': f'Sight_{city_id}_{sight_id}','score': np.random.randint(60, 101)  # 评分在60到100之间})return pd.DataFrame(data)mock_data = generate_mock_data()# 找到每个城市评分最高的景点
city_best_scores = mock_data.loc[mock_data.groupby('city_id')['score'].idxmax()]# 找到所有景点的最高评分(BS)
best_score = city_best_scores['score'].max()# 统计全国有多少个景点获得了这个最高评分(BS)
num_best_sights = (mock_data['score'] == best_score).sum()# 统计每个城市有多少个景点获得了这个最高评分(BS)
city_best_sight_counts = mock_data[mock_data['score'] == best_score]['city_id'].value_counts().head(10)# 创建一个DataFrame用于可视化
visual_data = city_best_sight_counts.reset_index()
visual_data.columns = ['city_id', 'count']# 使用Seaborn进行增强样式的条形图可视化
plt.figure(figsize=(14, 10))
sns.barplot(x='city_id', y='count', data=visual_data, palette='viridis')# 添加标题和标签
plt.title(f'Top 10 Cities with the Most Best Scored Sights (BS = {best_score})', fontsize=16)
plt.xlabel('City ID', fontsize=14)
plt.ylabel('Number of Best Scored Sights', fontsize=14)# 显示图表
plt.show()# 打印结果
print(f'最高评分(BS):{best_score}')
print(f'获得最高评分(BS)的景点数量:{num_best_sights}')
print(f'拥有最多最高评分(BS)景点的前10个城市:')
print(city_best_sight_counts)

这不是完整代码。

在这里插入图片描述
要解决这个问题,我们需要分析一个包含352个城市和每个城市100个景点评分的旅游景点数据集。目标是找出所有景点评分中的最高分,以及获得最高评分景点最多的城市。以下是解题和建模过程:
数据预处理
读取数据:读取每个城市的csv文件,提取每个景点的信息。
提取评分信息:从每个景点的信息中提取评分,并记录每个景点的名称和评分。
找出最高评分(Best Score,BS)
找出最高评分:遍历所有景点,找出最高评分。
找出获得最高评分(BS)的景点数量
统计最高评分景点:统计每个城市中获得最高评分的景点数量。
找出拥有最多最高评分(BS)景点的城市
排序城市:根据每个城市中最高评分景点的数量进行排序,找出前10个城市。

老外游中国—重要

【文档】2024 华数杯C题老外游中国解题文档

https://docs.qq.com/doc/DU1RBWG9aUXVUYUhF

截图:
压缩包包含以下内容:
● 解题代码(已打包,可运行)
● 代码解析
● 解题思路
● 完整解题文章(37页)

在这里插入图片描述
预览图如下:

在这里插入图片描述

相关文章:

【2024年华数杯C题老外游中国】(完整题解+代码+完整参考论文)

请问 352 个城市中所有 35200 个景点评分的最高分(Best Score,简称 BS)是多少?全国有多少个景点获评了这个最高评分(BS)?获评了这个最高评分(BS)景点最多的城市有哪些&am…...

全球氢化双酚A (HBPA)市场规划预测:2030年市场规模将接近1330亿元,未来六年CAGR为2.7%

一、引言 随着全球化工行业的持续发展,氢化双酚A (HBPA)作为重要的化工原料,其市场重要性日益凸显。本文旨在探索HBPA行业的发展趋势、潜在商机及其未来展望。 二、市场趋势 全球HBPA市场的增长主要受全球化工行业增加、消费者对高性能化工产品要求提高…...

【C++】异常处理:深度解析与实战精髓,不容错过的编程秘籍

🌈 个人主页:Zfox_ 🔥 系列专栏:C从入门到精通 目录 🚀 前言:C语言传统的处理错误的方式 一: 🔥 C异常概念二: 🔥 异常的使用 2.1 📖 异常的抛出和…...

智能指针的循环引用 是什么 怎么引起的

智能指针的循环引用 是什么 怎么引起的 智能指针的循环引用(Circular Reference)是指两个或多个对象之间的共享指针相互引用,导致这些对象永远不会被释放,从而引发内存泄露。主要发生在使用std::shared_ptr时,因为它们…...

Stegdetect教程:如何用Stegdetect检测和破解JPG图像隐写信息

一、Stegdetect简介 Stegdetect 是一个开源工具,专门设计用于检测图像文件(JPG格式)中的隐写信息。Stegdetect 可以检测多种常见的隐写方法,比如 JSteg、JPHide 和 OutGuess 等。 二、使用Stegdetect检测图像隐写 官方描述&#…...

Co-Detr

参考:https://www.bilibili.com/video/BV1Sh4y1F7ur/?spm_id_from333.788&vd_source156234c72054035c149dcb072202e6be 之前的detr正样本数量少,匹配不平衡。 主要修改两个地方:encoder和decoder。 1.在encoder之后加入RPN,a…...

校园选课助手【1】-项目整体架构从此开始

项目背景 随着高校招生规模的不断扩大,学生选课需求日益增长。为提高选课效率,降低学生选课压力,本项目旨在开发一款校园选课助手软件。 项目目标:开发一款具有以下特点的校园选课助手软件: 易用性:界面简洁&#xff…...

椭圆曲线加法运算

1. 定义 椭圆曲线 (Elliptic Curve) 不是函数,而是一条平面曲线,其方程是定义如下: y 2 x 3 a x b y^2x^3axb y2x3axb 其中,判别式 Δ − 16 ( 4 a 3 27 b 2 ) ≠ 0 \Delta -16(4a^327b^2)\neq 0 Δ−16(4a327b2)0。判别…...

(STM32笔记)九、RCC时钟树与时钟 第一部分

我用的是正点的STM32F103来进行学习,板子和教程是野火的指南者。 之后的这个系列笔记开头未标明的话,用的也是这个板子和教程。 九、RCC时钟树与时钟 九、RCC时钟树与时钟1、时钟树HSE时钟HSI时钟锁相环时钟系统时钟HCLK时钟PCLK1时钟PCLK2时钟RTC时钟独…...

fastjson-流程分析

参考视频:fasfjson反序列化漏洞1-流程分析 分析版本 fastjson1.2.24 JDK 8u65 分析过程 新建Person类 public class Person {private String name;private int age;public Person() {System.out.println("constructor_0");}public Person(String na…...

Linux 命令安装

系列文章目录 提示:仅用于个人学习,进行查漏补缺使用。 1.Linux介绍、目录结构、文件基本属性、Shell 2.Linux常用命令 3.Linux文件管理 4.Linux 命令安装 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助…...

清华和字节联合推出的视频理解大模型video-SALMONN(ICML 2024)

video-SALMONN: Speech-Enhanced Audio-Visual Large Language Models 论文信息 paper:https://arxiv.org/abs/2406.15704 code:https://github.com/bytedance/SALMONN/ AI也会「刷抖音」!清华领衔发布短视频全模态理解新模型 | ICML 2024 …...

从数据爬取到可视化展示:Flask框架与ECharts深度解析

目录 🔹 Flask框架源码解析 Flask应用初始化路由与视图函数请求与响应中间件 🔹 ECharts可视化精讲 ECharts安装与配置基本图表类型图表样式与交互高级图表配置与数据动态更新实战:结合Flask与ECharts展示爬取数据 Flask框架源码解析 &…...

【jvm】类加载分几步

目录 1. 加载(Loading)2. 链接(Linking)2.1 验证(Verification)2.2 准备(Preparation)2.3 解析(Resolution) 3. 初始化(Initialization&#xff0…...

使用Apache http client发送json数据(demo)

POM依赖 &#xff1a; <dependency><groupId>org.apache.httpcomponents</groupId><artifactId>httpclient</artifactId><version>4.5.12</version></dependency><dependency><groupId>com.alibaba</groupId&g…...

读零信任网络:在不可信网络中构建安全系统07设备信任

1. 设备信任 1.1. 在零信任网络中建立设备信任至关重要&#xff0c;这也是非常困难的一个环节 1.2. 建立设备信任是基石&#xff0c;直接影响零信任网络架构的成败 1.3. 大多数网络安全事件都和攻击者获得信任设备的控制权相关&#xff0c;这种情况一旦发生&#xff0c;信任…...

【Java算法专场】前缀和(下)

目录 和为 K 的子数组 算法分析 算法步骤 算法代码 算法示例 和可被 K 整除的子数组 算法分析 同余定理 负数取余 算法步骤 算法代码 算法示例 连续数组 算法分析 算法步骤 算法代码 算法示例 矩阵区域和 算法分析 算法步骤 算法代码 算法示例 算法分析 …...

音视频相关文章总目录

为了方便各位观看&#xff0c;本文置顶&#xff0c;以目录形式汇集我写过的大部分音视频专题文章。之后文章更新&#xff0c;本目录也会同步更新。写得不好和零零散散的文章就不放在这里了&#x1f605; &#xff1a; 音视频入门基础&#xff1a;像素格式专题系列文章&#x…...

7月31日MySQL学习笔记

今日内容: mysql: 行列转换 数据类型 函数 触发器 存储过程 事务 索引(还没讲) 三范式 JDBC连接数据库的6个步骤 三握四挥 行列转换 第一步 新建要转换的列 select name, 1 as 语文, 1 as 数学, 1 as 英语 from t_score GROUP BY name 第二步 对每一列填入值…...

什么是容器查询?分享 1 段优质 CSS 代码片段!

本内容首发于工粽号&#xff1a;程序员大澈&#xff0c;每日分享一段优质代码片段&#xff0c;欢迎关注和投稿&#xff01; 大家好&#xff0c;我是大澈&#xff01; 本文约 700 字&#xff0c;整篇阅读约需 1 分钟。 今天分享一段优质 CSS 代码片段&#xff0c;使用容器查询…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

渗透实战PortSwigger靶场:lab13存储型DOM XSS详解

进来是需要留言的&#xff0c;先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码&#xff0c;输入的<>当成字符串处理回显到页面中&#xff0c;看来只是把用户输…...

uni-app学习笔记三十五--扩展组件的安装和使用

由于内置组件不能满足日常开发需要&#xff0c;uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件&#xff0c;需要安装才能使用。 一、安装扩展插件 安装方法&#xff1a; 1.访问uniapp官方文档组件部分&#xff1a;组件使用的入门教程 | uni-app官网 点击左侧…...

2025年- H71-Lc179--39.组合总和(回溯,组合)--Java版

1.题目描述 2.思路 当前的元素可以重复使用。 &#xff08;1&#xff09;确定回溯算法函数的参数和返回值&#xff08;一般是void类型&#xff09; &#xff08;2&#xff09;因为是用递归实现的&#xff0c;所以我们要确定终止条件 &#xff08;3&#xff09;单层搜索逻辑 二…...

简单介绍C++中 string与wstring

在C中&#xff0c;string和wstring是两种用于处理不同字符编码的字符串类型&#xff0c;分别基于char和wchar_t字符类型。以下是它们的详细说明和对比&#xff1a; 1. 基础定义 string 类型&#xff1a;std::string 字符类型&#xff1a;char&#xff08;通常为8位&#xff09…...