当前位置: 首页 > news >正文

书生大模型学习笔记2 - Python

Python实现wordcount

请实现一个wordcount函数,统计英文字符串中每个单词出现的次数。返回一个字典,key为单词,value为对应单词出现的次数。
解题思路:首先把字母转小写>然后把单词取出来去除标点>循环单词列表>key已存在则value+1否则添加key
在这里插入图片描述

VScode连接InternStudio debug笔记

  1. VScode连接到开发机(具体方法见上一篇文章)

  2. 安装图中两个python插件
    在这里插入图片描述

  3. 创建debug配置文件
    在这里插入图片描述在这里插入图片描述

  4. pip安装debugpy

    pip install debugpy
    
  5. 命令行启动debug server

    python -m debugpy --listen 5678 --wait-for-client ./learning/wordcount.py
    
  6. 开始debug
    在这里插入图片描述
    在这里插入图片描述

    debug面板各按钮功能介绍:

    1: continue: 继续运行到下一个断点
    2: step over:跳过,可以理解为运行当前行代码,不进入具体的函数或者方法。
    3: step into: 进入函数或者方法。如果当行代码存在函数或者方法时,进入代码该函数或者方法。如果当行代码没有函数或者方法,则等价于step over。
    4: step out:退出函数或者方法, 返回上一层。
    5: restart:重新启动debug

相关文章:

书生大模型学习笔记2 - Python

Python实现wordcount 请实现一个wordcount函数,统计英文字符串中每个单词出现的次数。返回一个字典,key为单词,value为对应单词出现的次数。 解题思路:首先把字母转小写>然后把单词取出来去除标点>循环单词列表>key已存…...

JavaScript三级联动jQuery写法

HTML结构 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>三级联动</title><!-- <style…...

无人机挂载抓捕网

一、技术原理与机制 无人机挂载抓捕网装置的技术原理是通过无人机平台的飞行能力和灵活性&#xff0c;结合特制的抓捕网装置&#xff0c;实现对目标的快速、准确抓捕。抓捕网装置在接收到指令后&#xff0c;通过特定机制快速展开并包围目标&#xff0c;从而实现抓捕任务。 二…...

174.地下城游戏——LeetCode

题目 恶魔们抓住了公主并将她关在了地下城 dungeon 的 右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里&#xff0c;他必须穿过地下城并通过对抗恶魔来拯救公主。 骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻…...

登录相关功能的优化【JWT令牌+拦截器+跨域】

登录相关功能的优化 登录后显示当前登录用户el-dropdown: Element - The worlds most popular Vue UI framework <el-dropdown style"float: right; height: 60px; line-height: 60px"><span class"el-dropdown-link" style"color: white;…...

向日葵没有显示器会卡住

前言 有一台机器【ubuntu20】&#xff0c;用于远程开发&#xff0c;使用向日葵时候&#xff0c;如果不接显示器是会卡住的。。。 显示屏是有限的&#xff0c;所以现在解决一下这个问题。 卡在登录界面 双击启动 由于Ubuntu默认显示管理器是gdm&#xff0c;而向日葵使用的是l…...

【机器学习西瓜书学习笔记——聚类】

机器学习西瓜书学习笔记【第九章】 第九章 聚类9.1 聚类任务9.2 性能度量两类指标 9.3距离计算基本性质属性有序属性无序属性 混合距离加权距离 9.4 原型聚类K-MEANS聚类算法步骤优势劣势 学习向量量化高斯混合聚类步骤难点例子EM思想的体现小结 9.5 密度聚类9.6 层次聚类 第九…...

MATLAB(8)深度变化模型

一、前言 在MATLAB中模拟深度变化模型通常依赖于具体的应用场景&#xff0c;比如海洋深度、地下水深度、地形高度变化等。由于“深度变化”可以涉及多种物理过程和数学模型&#xff0c;我将提供一个简化的示例&#xff0c;该示例模拟了一个基于时间变化的深度变化模型&#xff…...

mp3格式转换器哪个好用?汇总七款音频格式转换方法(无损转换)

音乐已经成为我们生活中不可或缺的一部分。但是在播放的时候&#xff0c;可能会遇到音频格式不兼容的情况。特别是在一些下载站或音乐平台获取的音频&#xff0c;有些特殊格式在播放器上无法正常播放&#xff0c;一般这种情况我们需要借助mp3转换器解决。 mp3是一种常见的数字音…...

移行前的复盘:CodeCommit 的重要地位分析

前言 截至7月28日&#xff0c;关于AWS CodeCommit的现状如下&#xff1a; 现有账号的现有存储库可以继续使用CodeCommit&#xff0c;不受限制。之前未使用过CodeCommit的账号&#xff08;或没有现有存储库的账号&#xff09;无法创建新的存储库。 这并不意味着CodeCommit的服…...

Java中等题-括号生成(力扣)

数字 n 代表生成括号的对数&#xff0c;请你设计一个函数&#xff0c;用于能够生成所有可能的并且 有效的 括号组合。 示例 1&#xff1a; 输入&#xff1a;n 3 输出&#xff1a;["((()))","(()())","(())()","()(())","()()(…...

Flink 实时数仓(八)【DWS 层搭建(二)流量域、用户域、交易域搭建】

前言 今天的任务是完成流量域最后一个需求、用户域的两个需求以及交易域的部分需求&#xff1b; 1、流量域页面浏览各窗口汇总表 任务&#xff1a;从 Kafka 页面日志主题读取数据&#xff0c;统计当日的首页和商品详情页独立访客数。 注意&#xff1a;一般我们谈到访客&…...

gitlab-runner /var/run/docker.sock connect permission denied

usermod -aG docker gitlab-runner sudo service docker restart参考&#xff1a;https://gitlab.com/gitlab-org/gitlab-runner/-/issues/3492...

网络安全 - 应急响应检查表

前言 本项目旨在为应急响应提供全方位辅助&#xff0c;以便快速解决问题。结合自身经验和网络资料&#xff0c;形成检查清单&#xff0c;期待大家提供更多技巧&#xff0c;共同完善本项目。愿大家在应急之路一帆风顺。 图片皆来源于网络&#xff0c;如有侵权请联系删除。 一…...

AD常用PCB设计规则介绍 (详细版)

AD09常用PCB设计规则介绍 电气设计规则用来设置在电路板布线过程中所遵循的电气方面的规则&#xff0c;包括安全间距、短路、未布线网络和未连接引脚这四个方面的规则&#xff1a; &#xff08;1&#xff09;、安全间距规则(clearance) 该规则用于设定在PCB设计中&#xff0…...

mysql主从服务配置

主从MySQL服务器 [rootlocalhost ~]# yum -y install ntpdate [rootlocalhost ~]# ntpdate cn.ntp.org.cn [rootlocalhost ~]# yum -y install rsync [rootlocalhost ~]# vim mysql.sh #!/bin/bash yum list installed |grep libaio if [ $? ne 0 ]; then yum -y install…...

Redis基础总结、持久化、主从复制、哨兵模式、内存淘汰策略、缓存

文章目录 Redis 基础Redis 是什么&#xff0c;有哪些特点为什么要使用 Redis 而不仅仅依赖 MySQLRedis 是单线程吗Redis 单线程为什么还这么快 Redis 数据类型和数据结构五种基本数据结构及应用场景其他数据类型Redis 底层数据结构 Redis 持久化数据不丢失的实现AOF 日志RDB 快…...

Java与Python优劣势对比:具体例子与深入分析

在软件开发的世界里&#xff0c;Java和Python是两座不可忽视的高峰。它们各自拥有独特的优势和应用场景&#xff0c;为开发者提供了多样化的选择。本文将通过具体例子&#xff0c;深入分析Java和Python在不同方面的表现&#xff0c;以期为读者提供更为详尽的参考。 1. 语法简洁…...

C++内存泄漏介绍

C内存泄漏&#xff08;Memory Leak&#xff09;是指程序在运行过程中&#xff0c;动态分配的内存没有被适当地释放或回收&#xff0c;导致这部分内存始终被占用&#xff0c;无法再被程序或其他程序使用。这种情况通常发生在使用了new或malloc等函数动态分配内存后&#xff0c;忘…...

C++分析红黑树

目录 红黑树介绍 红黑树的性质与平衡控制关系 红黑树节点的插入 情况1&#xff1a;不需要调整 情况2&#xff1a;uncle节点为红色 情况3&#xff1a;uncle节点为黑色 总结与代码实现 红黑树的删除&#xff08;待实现&#xff09; 红黑树的效率 红黑树介绍 红黑树是第二种平衡二…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...