【ML】为什么要做batch normlization,怎么做batch normlization
为什么要做batch normlization,怎么做batch normlization
- 1. batch normlization
- 1.1 批量归一化是什么:
- 1.2 为什么要做批量归一化:
- 2. feature normalization
- 2.1 特征归一化是什么:
- 2.2 为什么要做特征归一化:
- 3. batch normlization test
1. batch normlization
Batch Normalization(批量归一化)是一种在深度神经网络中常用的技术,特别是在训练期间,用于提高训练速度、稳定性和性能。它由 Sergey Ioffe 和 Christian Szegedy 在 2015 年提出。
1.1 批量归一化是什么:
批量归一化操作涉及对神经网络中的每个小批量(batch)数据进行归一化处理。具体来说,它对每个特征通道(feature map)的激活值进行归一化,使其具有固定的均值和方差。归一化过程如下:
-
计算批次的均值和方差:
对于每个特征通道,计算小批量数据的均值 (\mu_B) 和方差 (\sigma_B^2)。 -
归一化:
使用批次的均值和方差对数据进行归一化,得到:
[ \hat{x} = \frac{x - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} ]
其中 (\epsilon) 是一个很小的常数,用来保证数值稳定性。 -
缩放和平移:
然后通过两个可学习的参数 (\gamma)(缩放因子)和 (\beta)(偏移量)对归一化后的数据进行缩放和平移:
[ y = \gamma \hat{x} + \beta ]
1.2 为什么要做批量归一化:
-
加速训练:
批量归一化可以显著加速训练过程,因为它减少了训练初期的震荡,使得优化算法能够更快地收敛。 -
提高稳定性:
它使得每层网络的输入分布更加稳定,减少了梯度消失或爆炸的风险。 -
允许更高的学习率:
由于批量归一化减少了深度网络中的内部协变量偏移问题,可以使用更高的学习率,从而加快训练速度。 -
减少对初始化的依赖:
传统的网络训练对权重初始化非常敏感,而批量归一化减少了这种敏感性,使得网络更容易训练。 -
作为正则化:
批量归一化在一定程度上起到了正则化的作用,可以减少过拟合。 -
允许更深层网络:
由于它有助于缓解梯度消失和梯度爆炸问题,因此使得训练更深的网络成为可能。 -
加速收敛:
批量归一化可以使得训练过程中的损失函数更快地下降,从而加速收敛。
尽管批量归一化带来了许多好处,但它也有一些局限性,比如可能会轻微增加模型的计算负担,以及在小批量大小下可能导致训练和推理不一致的问题。在某些情况下,研究者可能会使用其他的归一化技术,如 Layer Normalization、Instance Normalization 或 Group Normalization。
2. feature normalization
Feature normalization(特征归一化)是深度学习和机器学习中用于数据预处理的一种技术,旨在将数据的特征缩放到统一的范围或分布。这通常有助于提高模型的训练效率和性能。
2.1 特征归一化是什么:
特征归一化通常包括以下几种类型:
-
零均值归一化(Zero-Mean Normalization):
将特征的均值调整为0,即通过减去特征的均值来实现。 -
单位方差归一化(Unit Variance Normalization):
将特征缩放到单位方差,即在零均值归一化的基础上,再除以特征的标准差。 -
最小-最大归一化(Min-Max Normalization):
将特征缩放到指定的 [a, b] 范围内,通常是 [0, 1],通过线性变换实现。 -
Z得分归一化(Z-Score Normalization):
基于特征的均值和标准差进行归一化,使得结果具有单位方差和零均值。
2.2 为什么要做特征归一化:
-
提高模型收敛速度:
归一化可以加速基于梯度下降的优化算法的收敛速度,因为梯度在各个方向上的尺度一致。 -
防止某些特征占优:
当特征在不同尺度上时,尺度较大的特征可能会在模型训练中占主导地位,归一化可以避免这种情况。 -
提高模型泛化能力:
归一化有助于模型学习到更加一般化的特征表示,从而提高模型对新数据的泛化能力。 -
稳定训练过程:
归一化可以减少训练过程中的数值不稳定性,如梯度爆炸或消失问题。 -
适应不同模型的需求:
某些模型,如支持向量机(SVM)和 K-近邻(KNN)等,对特征的尺度非常敏感,归一化是这些模型训练的前提。 -
改善模型性能:
在某些情况下,归一化可以显著提高模型的预测精度。 -
便于比较不同特征:
当特征在不同的量纲和尺度时,归一化后可以更容易地比较和组合不同特征。 -
数据预处理的一部分:
特征归一化是数据预处理的重要步骤之一,有助于后续的特征工程和模型训练。
然而,并非所有情况下都需要特征归一化。例如,一些基于树的模型(如决策树、随机森林)和一些深度学习模型(如使用批量归一化的卷积神经网络)可能不依赖于特征的尺度。此外,如果数据集中的特征已经接近归一化,或者特征的尺度对于问题本身具有重要意义,则可能不需要进行归一化。
3. batch normlization test
test 阶段如何获取 train 呢? 如何更新 均值和方差,如果使用pytorch实现,那么pytorch再训练阶段,(假设batch =64) ,在数据陆续进入 train的batch个过程中 , 会维持更新 均值和方差,当test阶段可以调用这个更新的均值和方差
相关文章:

【ML】为什么要做batch normlization,怎么做batch normlization
为什么要做batch normlization,怎么做batch normlization 1. batch normlization1.1 批量归一化是什么:1.2 为什么要做批量归一化: 2. feature normalization2.1 特征归一化是什么:2.2 为什么要做特征归一化: 3. batc…...

【C++指南】命名空间
💓 博客主页:倔强的石头的CSDN主页 📝Gitee主页:倔强的石头的gitee主页 ⏩ 文章专栏:《C指南》 期待您的关注 目录 一、命名空间的重要性 1. C语言中没有命名空间而存在的问题 2. C引入了命名空间解决的问题 3.…...

RocketMQ Dashboard安装
RocketMQ Dashboard 是一个基于 Web 的管理工具,用于监控和管理 RocketMQ 集群。它提供了一个用户友好的界面,使管理员能够轻松地查看和操作 RocketMQ 系统中的各种组件和状态。 主要功能包括: 集群管理: 监控和管理 NameServer 和 Broker …...

前端web开发HTML+CSS3+移动web(0基础,超详细)——第3天
目录 一,列表-无序和有序的定义列表 二,表格-基本使用与表格结构标签 三,合并单元格 四,表单-input标签 五,表单-下拉菜单 六,表单-文本域 七,表单-label标签 八,表单-按钮 …...
认识MySQL
目录 数据库是什么呢?MySQL 数据库是什么呢? 在我们开始学习MySQL之前,先来了解一下,什么是数据库呢?我相信此时很多人会说是管理数据的,完全正确!用数据库我们可以去存储大量的数据。我来给你…...

尚品汇-创建ES索引库(二十七)
目录: (1)商品检索功能介绍 (2)根据业务搭建数据结构 (3)nested 介绍 (4)搭建service-list服务 (5)构建实体与es mapping建立映射关系 &…...
设计模式-六大原则
概述 设计模式的六大原则是设计模式的基础,了解设计模式的原则,有利于设计模式实际应用的理解,在真实使用的时候,一般不太可能一个程序满足所有的设计模式六大原则,或多或少都会有违背设计模的地方,所以不…...

MyBatis搭建和增删改查
MyBatis是一个开源的持久层框架,用于处理数据库的增删改查操作。它能够将Java对象与数据库中的数据进行映射关系的配置,并自动生成对应的SQL语句,从而简化了数据库操作的编码工作。 MyBatis的核心思想是将SQL语句与Java代码分离,…...

【一图学技术】6.反向代理 vs API网关 vs 负载均衡的原理和使用场景
反向代理 vs API网关 vs 负载均衡 一、概念 🌏反向代理(Reverse Proxy)是一种位于服务器和客户端之间的代理服务器。 它接收来自客户端的请求,并将其转发给后端服务器,然后将后端服务器的响应返回给客户端。客…...
python爬虫番外篇 | Reuqests库高级用法(1)
文章目录 1.会话对象(Session Objects)2.请求和响应对象(Request and Response Objects)3.准备好的请求(Prepared Requests)4.SSL证书验证5.客户端证书6.CA 证书7.正文内容工作流程(Body Conten…...

【链表OJ】常见面试题 3
文章目录 1.[环形链表II](https://leetcode.cn/problems/linked-list-cycle-ii/description/)1.1 题目要求1.2 快慢指针1.3 哈希法 2.[随机链表的复制](https://leetcode.cn/problems/copy-list-with-random-pointer/description/)2.1 题目要求2.2 迭代法 1.环形链表II 1.1 题目…...

Linux学习笔记9(Linux包管理)
目录 归档包管理 归档 查看归档包 解归档包 压缩包管理 Zip/unzip gzip/gunzip bzip2/bunzip2 源码包安装软件 三大步: 预备步骤:安装依赖的编译库 一、./configure --prefix/usr/local/nginx 二、make 三、make install 软件包安装 配置…...
论文阅读《Geometric deep learning of RNA structure》
引入了机器学习方法,通过少量的数据学习。只使用原子坐标作为输入。 预测RNA三维结构比预测蛋白质结构更困难。 设计了一个原子旋转等变评分器ARES,由每个原子的三维坐标和化学元素类型(输入)指定,ARES预测模型与未知真…...

宏集方案 | 传统建筑智能化改造,迈向物联新时代
前言 智能建筑涉及多个系统的集成,如照明、空调、安防等,这些系统的兼容性和协调运作是一大挑战。然而,传统的工业建筑和商业楼宇受早期设计的局限,多个控制系统间互不兼容,并且难以重新部署通信线缆。 针对传统建筑…...
如果服务器更改Web端口会减少被攻击的风险吗?
通过更改服务器的Web端口,是否能够显著降低被攻击的风险?首先,理解Web服务默认使用的端口是关键。HTTP协议通常使用80端口,而HTTPS则默认使用443端口。这些端口因其广泛认知而成为黑客攻击的首要目标。理论上,将Web服务迁移到非标…...

vim列编辑模式
在编辑文本时,经常会有这样的需求,对特定列进行进行批量编辑。比如批量注释一段代码,或者删除待定字符(如一列空格)。幸运的是VIM支持列编辑模式。 假设文本内容: Maximum length of a custom vocabulary…...

如何实现pxe安装部署
此实验环境:rhel7主机 一、kickstart自动化安装脚本 1、安装可视化图形 [rootlocalhost ~]# yum group install "Server with GUI" 2、关闭vmware dhcp功能(编辑-虚拟网络编辑器) 3、httpd 1、安装httpd服务 [rootlocalhost …...

机器学习常见模型
1、线性模型 线性模型是机器学习最基本的算法类型,它试图学到一个通过多个特征(属性)计算的线性组合来预测的函数,简单的线性回归形式如yaxb,其中,x代表特征,而y代表结果,一旦a和b的…...

【python案例】基于Python 爬虫的房地产数据可视化分析设计与实现
引言 研究背景与意义 房地产行业在我国属于支柱性产业,在我国社会经济发展中一直扮演着重要角色。房价问题,尤其是大中城市的房价问题,一直是政府、大众和众多研究人员关注的热点。如何科学地预测房价是房价问题的研究方向之一。随着互联网…...

如何在Python中诊断和解决内存溢出问题
python的内存溢出即程序在申请内存后未能正确释放,导致随着时间推移占用的内存越来越多,以下是一些可能导致内存溢出的原因: 1、循环引用:当对象之间形成循环引用,并且这些对象定义了__del__方法时,Python…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...

工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...

Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...

CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...