大模型时代的操作系统:融合 Rust 和大模型,打造 AI 操作系统
每次技术革命,无论是个人电脑、互联网还是移动设备,总是从硬件开始,然后演化到软件层。而操作系统是计算机系统的核心,没有它,计算机就只是一堆硬件,无法运行任何程序。
微软 CEO 萨蒂亚·纳德拉曾将生成式 AI 带来的转变比作从蒸汽机到电力的转变。“你不能简单地把电动机放在蒸汽机的位置,而其他一切都保持不变,你必须重新布线整个工厂。”这一两年,“围绕大模型重建操作系统”一直是一个热门话题,产生了各种将大模型作为操作系统或引入操作系统的想法,进而又出现了各种场景下的 AI OS。
不管是手机还是全新的 AI 终端,操作系统都是贯穿其中的灵魂,如今手机厂商的“AI OS”角逐也正在上演。苹果在 WWDC 上宣布了“Apple Intelligence”,为 iPhone、Mac 等设备提供一系列 AI 功能。随着苹果正式进军“AI 战场”,生成式能力加持的 AI 手机显然有加速发展的趋势。
实际上,国内 AI 手机起风更早,vivo 去年发布了自研 AI 大模型矩阵“蓝心大模型”,以及面向通用人工智能时代自主研发的蓝河操作系统 BlueOS。BlueOS 的系统架构选择了用 Rust 语言编写,减少安全漏洞,并引入大模型的能力,支持复杂的意图识别和声音、图片、手势等多模态交互方式,还并为开发者提供了自动编码等应用开发新范式。
大模型会给操作系统带来什么变化?7 月 27 日,vivo 在北京举办了首场蓝河操作系统技术沙龙,我们在会后也邀请到了 vivo 技术规划专家袁东参加 InfoQ 的“极客有约”直播,为我们详细解读了蓝河操作系统的设计理念和技术细节,以下是采访整理。
大模型时代,我们到底需要
一个什么样的操作系统
InfoQ:最近一两年,我们有了各种关于大模型操作系统的说法,举例来说,传统意义上的 OS、AI-powerd OS,还有 Andrej Karpathy 提出的 AIOS/LLM OS 等各种定义。与传统操作系统相比, AI-powerd OS 和 AIOS 各呈现出哪些新的架构特征?蓝河操作系统比较接近哪一种?
袁东: 从最近大模型代表的 GenAI 的火爆,到最近 WWDC 和 Google IO 对公众越来越多的披露,从业者意识到,每天我们朝夕相处的操作系统在这个时代将会有非常大的革新。
目前业界对 AI OS 或者 AI-powered OS 没有明确的概念或者界限,但可以确定的是,技术架构层面,端侧模型原生入驻操作系统提供系统级别的智能能力,这将在人机交互、技术架构和生态方面会有很大影响。
在技术架构方面,端侧模型原生入驻操作系统,提供系统级别的智能生成能力。
蓝河操作系统原生集成蓝心大模型,意味着 App 可以基于大模型进行内容构建,后续随着 AI 系统的进一步强化,除了架构的革新外,会有更多的符合 AI 时代的特性推出。例如,普通人可以利用系统创造出符合自己风格的内容。
InfoQ:大模型热了后,“围绕大模型重建操作系统”就成了一个热门的话题,可能大家一开始希望大模型更具颠覆性,希望能给底层也带来革命。这让我想起了不久前 Rabbit R1 翻车事件,我认为其中一个关键原因是它的宣传策略。Rabbit R1 宣称其操作系统与之前的安卓系统不同,它是一个全新的系统,能够运行大模型。这种宣传可能给消费者带来了误解或过高的期望,因为实际上它可能并没有达到所宣称的创新水平。那么您认为大模型时代,我们是否有必要重建一个跟安卓不同的操作系统?另外,您认为大模型到来后对操作系统的发展产生了什么样的影响?
袁东:Rabbit R1、Ai pin 等在我看来是行业对于 AI 时代大胆的尝试,希望探索出更适合 AI 时代的消费电子产品。目前来看,手机依然是最重要,AI 受益最多的个人产品之一。操作系统在 AI 时代需要明显的升级,借助 AI 智慧化提升用户体验。
我认为操作系统会因为大模型在人机交互、架构、生态,三个方面会有很大影响与改变。大模型产的智能涌现,类比移动互联网之于手机。 操作系统会围绕着交互范式、生态范式的改变,相应的做出很多调整。例如,为了打造个性化的系统,需要尽可能获取用户关乎自身的数据,相应的会有系统级别的方式(比如通过系统 App,用户操作)来获取这些私人数据,同时基于这些来给出更贴近用户的行动建议。
交互范式的变化,意味着服务类 App-Agent 之间的关系与形态慢慢发生变化。Agent 成为一个系统级别的超级 App,随之而来的是 生态发生变化。
架构方面,AI 大模型入驻操作系统,其提供了智能的能力,除了自身生成的内容要保证安全,同时我们 需要在操作系统中原生地集成安全检测机制,以防止用户遭受不必要的损失。
InfoQ:在面向大模型的发展过程中,操作系统面临的挑战和机遇是什么?
袁东:
从用户角度来看,需要考虑如何设计好交互入口(智能助手):
-
即交互方式,多模态智能化交互;
-
用户的意图理解,用户主动发起 - 系统主动发起对用户意图的理解;
-
用户需求拆分后的任务分发,系统级 App 的 AI 升级 到 第三方 App 都可以被智能调度。
从开发者生态角度来看,需要考虑如何建造一个共赢的 AI 时代的开发者生态。AI 时代新的 AI 生态架构策略,即围绕智能助手展开的智能生态:
-
三方程序向系统级别的智能助手提供 App 的能力描述、App 的应用数据;
-
这类改变类比于 2008 年,App Store 的提出,再次改变了 App 的分发策略,与商业策略。
从架构角度来看:
-
软件系统架构:持续迭代 AI 系统的设计
-
硬件架构:个人觉得不同时代的硬件也会有相应的革新,图形的兴盛带动了 GPU 的产生,神经网络的计算如果越来越重要 NPU 的发展也会有很大需求。
从原生 AI 硬件角度来看:
-
人类的五感——听觉、视觉、味觉、触觉和嗅觉——是我们与自然界交互的主要方式。在这些感官中,视觉和听觉是获取信息的主要途径。随着 AI 技术的发展,未来可能会出现原生的 AI 硬件,这些硬件将根据新的交互逻辑和形态进行设计。
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
文章知识点与官方知识档案匹配,可进一步学习相关知识
相关文章:

大模型时代的操作系统:融合 Rust 和大模型,打造 AI 操作系统
每次技术革命,无论是个人电脑、互联网还是移动设备,总是从硬件开始,然后演化到软件层。而操作系统是计算机系统的核心,没有它,计算机就只是一堆硬件,无法运行任何程序。 微软 CEO 萨蒂亚纳德拉曾将生成式 …...

【ML】为什么要做batch normlization,怎么做batch normlization
为什么要做batch normlization,怎么做batch normlization 1. batch normlization1.1 批量归一化是什么:1.2 为什么要做批量归一化: 2. feature normalization2.1 特征归一化是什么:2.2 为什么要做特征归一化: 3. batc…...

【C++指南】命名空间
💓 博客主页:倔强的石头的CSDN主页 📝Gitee主页:倔强的石头的gitee主页 ⏩ 文章专栏:《C指南》 期待您的关注 目录 一、命名空间的重要性 1. C语言中没有命名空间而存在的问题 2. C引入了命名空间解决的问题 3.…...

RocketMQ Dashboard安装
RocketMQ Dashboard 是一个基于 Web 的管理工具,用于监控和管理 RocketMQ 集群。它提供了一个用户友好的界面,使管理员能够轻松地查看和操作 RocketMQ 系统中的各种组件和状态。 主要功能包括: 集群管理: 监控和管理 NameServer 和 Broker …...

前端web开发HTML+CSS3+移动web(0基础,超详细)——第3天
目录 一,列表-无序和有序的定义列表 二,表格-基本使用与表格结构标签 三,合并单元格 四,表单-input标签 五,表单-下拉菜单 六,表单-文本域 七,表单-label标签 八,表单-按钮 …...

认识MySQL
目录 数据库是什么呢?MySQL 数据库是什么呢? 在我们开始学习MySQL之前,先来了解一下,什么是数据库呢?我相信此时很多人会说是管理数据的,完全正确!用数据库我们可以去存储大量的数据。我来给你…...

尚品汇-创建ES索引库(二十七)
目录: (1)商品检索功能介绍 (2)根据业务搭建数据结构 (3)nested 介绍 (4)搭建service-list服务 (5)构建实体与es mapping建立映射关系 &…...

设计模式-六大原则
概述 设计模式的六大原则是设计模式的基础,了解设计模式的原则,有利于设计模式实际应用的理解,在真实使用的时候,一般不太可能一个程序满足所有的设计模式六大原则,或多或少都会有违背设计模的地方,所以不…...

MyBatis搭建和增删改查
MyBatis是一个开源的持久层框架,用于处理数据库的增删改查操作。它能够将Java对象与数据库中的数据进行映射关系的配置,并自动生成对应的SQL语句,从而简化了数据库操作的编码工作。 MyBatis的核心思想是将SQL语句与Java代码分离,…...

【一图学技术】6.反向代理 vs API网关 vs 负载均衡的原理和使用场景
反向代理 vs API网关 vs 负载均衡 一、概念 🌏反向代理(Reverse Proxy)是一种位于服务器和客户端之间的代理服务器。 它接收来自客户端的请求,并将其转发给后端服务器,然后将后端服务器的响应返回给客户端。客…...

python爬虫番外篇 | Reuqests库高级用法(1)
文章目录 1.会话对象(Session Objects)2.请求和响应对象(Request and Response Objects)3.准备好的请求(Prepared Requests)4.SSL证书验证5.客户端证书6.CA 证书7.正文内容工作流程(Body Conten…...

【链表OJ】常见面试题 3
文章目录 1.[环形链表II](https://leetcode.cn/problems/linked-list-cycle-ii/description/)1.1 题目要求1.2 快慢指针1.3 哈希法 2.[随机链表的复制](https://leetcode.cn/problems/copy-list-with-random-pointer/description/)2.1 题目要求2.2 迭代法 1.环形链表II 1.1 题目…...

Linux学习笔记9(Linux包管理)
目录 归档包管理 归档 查看归档包 解归档包 压缩包管理 Zip/unzip gzip/gunzip bzip2/bunzip2 源码包安装软件 三大步: 预备步骤:安装依赖的编译库 一、./configure --prefix/usr/local/nginx 二、make 三、make install 软件包安装 配置…...

论文阅读《Geometric deep learning of RNA structure》
引入了机器学习方法,通过少量的数据学习。只使用原子坐标作为输入。 预测RNA三维结构比预测蛋白质结构更困难。 设计了一个原子旋转等变评分器ARES,由每个原子的三维坐标和化学元素类型(输入)指定,ARES预测模型与未知真…...

宏集方案 | 传统建筑智能化改造,迈向物联新时代
前言 智能建筑涉及多个系统的集成,如照明、空调、安防等,这些系统的兼容性和协调运作是一大挑战。然而,传统的工业建筑和商业楼宇受早期设计的局限,多个控制系统间互不兼容,并且难以重新部署通信线缆。 针对传统建筑…...

如果服务器更改Web端口会减少被攻击的风险吗?
通过更改服务器的Web端口,是否能够显著降低被攻击的风险?首先,理解Web服务默认使用的端口是关键。HTTP协议通常使用80端口,而HTTPS则默认使用443端口。这些端口因其广泛认知而成为黑客攻击的首要目标。理论上,将Web服务迁移到非标…...

vim列编辑模式
在编辑文本时,经常会有这样的需求,对特定列进行进行批量编辑。比如批量注释一段代码,或者删除待定字符(如一列空格)。幸运的是VIM支持列编辑模式。 假设文本内容: Maximum length of a custom vocabulary…...

如何实现pxe安装部署
此实验环境:rhel7主机 一、kickstart自动化安装脚本 1、安装可视化图形 [rootlocalhost ~]# yum group install "Server with GUI" 2、关闭vmware dhcp功能(编辑-虚拟网络编辑器) 3、httpd 1、安装httpd服务 [rootlocalhost …...

机器学习常见模型
1、线性模型 线性模型是机器学习最基本的算法类型,它试图学到一个通过多个特征(属性)计算的线性组合来预测的函数,简单的线性回归形式如yaxb,其中,x代表特征,而y代表结果,一旦a和b的…...

【python案例】基于Python 爬虫的房地产数据可视化分析设计与实现
引言 研究背景与意义 房地产行业在我国属于支柱性产业,在我国社会经济发展中一直扮演着重要角色。房价问题,尤其是大中城市的房价问题,一直是政府、大众和众多研究人员关注的热点。如何科学地预测房价是房价问题的研究方向之一。随着互联网…...

如何在Python中诊断和解决内存溢出问题
python的内存溢出即程序在申请内存后未能正确释放,导致随着时间推移占用的内存越来越多,以下是一些可能导致内存溢出的原因: 1、循环引用:当对象之间形成循环引用,并且这些对象定义了__del__方法时,Python…...

什么是爬虫软件?这两个爬虫神器你必须要试试
爬虫软件概述 爬虫,又称为网络爬虫或网页爬虫,是一种自动浏览互联网的程序,它按照一定的算法顺序访问网页,并从中提取有用信息。爬虫软件通常由以下几部分组成: 用户代理(User-Agent)…...

记录|MVS和VM软件使用记录
目录 前言一、常用属性二、触发模式选择三、操作注意点四、录像、抓拍功能五、VM软件六、VM软件界面介绍七、VM软件运行间隔八、VM软件图像源九、VM软件相机管理十、获取图像十一、方案存储十一、相机拍摄彩图转换颜色转换快速匹配特征模板:运行参数 十二、位置修正…...

算法通关:014_1:用栈实现队列
文章目录 题目总结代码运行结果 题目 用栈实现队列 leetcode :232 总结 时间复杂度 平均下来每个方式是O(1) 代码 class MyQueue {public Stack<Integer> in;public Stack<Integer> out;//初始化public MyQueue() {in new Stack<>();out new Stack<…...

【C#】Random
在 C# 中,Random 类的实例通常用于生成随机数。在方法内部或外部创建 Random 实例主要影响的是实例的生命周期和性能。 在方法外部创建 Random 实例 生命周期:如果在类的成员变量中创建 Random 实例,那么这个实例的生命周期将与类的实例相同…...

MongoDB简介及其在Java中的应用
什么是MongoDB? MongoDB是一个基于分布式文件存储的数据库,由C语言编写。它旨在为Web应用提供可扩展的高性能数据存储解决方案。MongoDB结合了关系数据库和非关系数据库(NoSQL)的特点,是功能最丰富、最像关系数据库的…...

JSON-LD上下文将属性映射到RDF IRIs示例
为了更清晰地说明JSON-LD上下文是如何将属性映射到RDF IRIs,我们可以基于提供的上下文规范,举一个完整的JSON-LD数据实例,并展示它是如何转换为RDF三元组的。 示例上下文 {"context": {"foaf": "http://xmlns.com…...

Spring的监听机制详解
Spring的监听机制详解 讲在前面 对Spring框架,大家都已不陌生,它给我们提供了很多功能,包括IoC、AOP、事务管理等。其中,Spring的事件监听机制是一项非常重要的功能,它允许开发人员定义和处理自定义事件,并…...

Cache结构
Cache cache的一般设计 超标量处理器每周期需要从Cache中同时读取多条指令,同时每周期也可能有多条load/store指令会访问Cache,因此需要多端口的Cache L1 Cache:最靠近处理器,是流水线的一部分,包含两个物理存在 指…...

国产版Sora复现——智谱AI开源CogVideoX-2b 本地部署复现实践教程
目录 一、CogVideoX简介二、CogVideoX部署实践流程2.1、创建丹摩实例2.2、配置环境和依赖2.3、上传模型与配置文件2.4、开始运行 最后 一、CogVideoX简介 智谱AI在8月6日宣布了一个令人兴奋的消息:他们将开源视频生成模型CogVideoX。目前,其提示词上限为…...