LVS中NAT模式和DR模式实战讲解
1DR模式
DR:Direct Routing,直接路由,LVS默认模式,应用最广泛,通过为请求报文重新封装一个MAC首部进行 转发,源MAC是DIP所在的接口的MAC,目标MAC是某挑选出的RS的RIP所在接口的MAC地址;源 IP/PORT,以及目标IP/PORT均保持不变
mac地址的转换
搭建一个DR模式的集群
架构图:

网络解释:
net模式网段:172.25.250.0/24
仅主机网段:172.25.254.0/24
路由器有两个网卡:一个net一个仅主机
LVS,web1,web2:用一个仅主机网卡再用一个环回网卡
注意:这里VIP的地址用环回网卡(画图的时候lo标记错了)
注意:需要打开路由器的内核路由功能使得路由器本身的两个网卡可以相互通信。并且设置Web服务器的ARP广播的响应,使得客户端发送172.25.254.200请求时只有LVS响应,web不响应。
一:ip设置
注意:客户端的网关写路由器的172.25.250.0网段,lvs,web1,web2写路由器的172.25.254.0网段
客户端:

路由器:

LVS:

Web1:

Web2:

二:路由器打开内核路由功能
vim /etc/sysctl.conf

sysctl -p 重新加载配置文件
三:部署LVS
软件下载:yum install ipvsadm -y
管理集群:
[root@lvs ~]# ipvsadm -A -t 172.25.254.200:80 -s rr
管理集群中RealServer:
[root@lvs ~]# ipvsadm -a -t 172.25.254.200:80 -r 172.25.254.10:80 -g
[root@lvs ~]# ipvsadm -a -t 172.25.254.200:80 -r 172.25.254.20:80 -g
四:配置服务器上的web服务
web1:
yum install httpd -y
echo web1 > /var/www/html/index.html
关arp
echo 1 > /proc/sys/net/ipv4/conf/all/arp_ignore
echo 2 > /proc/sys/net/ipv4/conf/all/arp_announce
echo 1 > /proc/sys/net/ipv4/conf/lo/arp_ignore
echo 2 > /proc/sys/net/ipv4/conf/lo/arp_announce
web2:
yum install httpd -y
echo web2 > /var/www/html/index.html
关ARP
echo 1 > /proc/sys/net/ipv4/conf/all/arp_ignore
echo 2 > /proc/sys/net/ipv4/conf/all/arp_announce
echo 1 > /proc/sys/net/ipv4/conf/lo/arp_ignore
echo 2 > /proc/sys/net/ipv4/conf/lo/arp_announce
五:测试

DR模式总结:

2.nat模式

1.客户端发送访问请求,请求数据包中含有请求来源(cip),访问目标地址(VIP)访问目标端口 (9000port)
2.VS服务器接收到访问请求做DNAT把请求数据包中的目的地由VIP换成RS的RIP和相应端口
3.RS1相应请求,发送响应数据包,包中的相应保温为数据来源(RIP1)响应目标(CIP)相应端口 (9000port)
4.VS服务器接收到响应数据包,改变包中的数据来源(RIP1-->VIP),响应目标端口(9000-->80)
5.VS服务器把修改过报文的响应数据包回传给客户端
6.lvs的NAT模式接收和返回客户端数据包时都要经过lvs的调度机,所以lvs的调度机容易阻塞
搭建一个负载均衡的集群
首先准备4个主机:客户,LVS,nod1.node2

1.Director 服务器采用双网卡,一个是桥接网卡连接外网,一个是仅主机网卡与后端Web服务器相连
2.Web服务器采用仅主机网卡与director相连
3.Web服务器网关指向DIP
4.后端web服务器不需要连接外网
网络配置:ip仅供参考
clict用的nat模式:ip为172.25.250.200.0/24网段
LVS两张网卡:nat的网卡网段172.25.250.200.0/24网段,仅主机网卡网段172.25.254.0/24网段
web1和web2:都为172.25.254.0/24网段
添加LVS网卡,一个选择net模式一个选择仅主机模式
node1,node2选择仅主机
客户选择net模式
LVS上下载软件:
yum install ipvsadm
修改内核参数:

net.ipv4.ip_forward = 1
sysctl -p重新加载
目的:使得LVS主机上两个网卡可以互通
设置转换规则:
[root@LVS ~]# ipvsadm -A -t 172.25.250.200:80 -s rr
[root@LVS ~]# ipvsadm -a -t 172.25.250.200:80 -r 172.25.254.10:80 -m
[root@LVS ~]# ipvsadm -a -t 172.25.250.200:80 -r 172.25.254.20:80 -m
[root@LVS ~]# ipvsadm -Ln #查看配置规则
配置服务端两个主机的web服务:
[root@node1 ~]# yum install httpd
[root@node1 ~]# echo web1 > /var/www/html/index.html
[root@node1 ~]# systemctl enable --now httpd
[root@node2 ~]# yum install httpd
[root@node2 ~]# echo web2 > /var/www/html/index.html
[root@node2 ~]# systemctl enable --now httpd
效果:

NAT模式总结

缺点:lvs调度器的NAT模式接收和返回客户端数据包时都要经过lvs的调度机,所以lvs的调度机容易阻塞
3.LVS算法
3.1.lvs调度算法类型
ipvs scheduler:根据其调度时是否考虑各RS当前的负载状态被分为两种:
静态方法和动态方法:
静态方法:仅根据算法本身进行调度,不考虑RS的负载情况
动态方法:主要根据每RS当前的负载状态及调度算法进行调度Overhead=value较小的RS将被调度
3.2.lvs静态调度算法
1、RR:roundrobin 轮询 RS分别被调度,当RS配置有差别时不推荐
2、WRR:Weighted RR,加权轮询根据RS的配置进行加权调度,性能差的RS被调度的次数少
3、SH:Source Hashing,实现session sticky,源IP地址hash;将来自于同一个IP地址的请求始终发往 第一次挑中的RS,从而实现会话绑定
4、DH:Destination Hashing;目标地址哈希,第一次轮询调度至RS,后续将发往同一个目标地址的请 求始终转发至第一次挑中的RS,典型使用场景是正向代理缓存场景中的负载均衡,如:宽带运营商
3.3.lvs动态调度算法
1、LC:least connections(最少链接发) 适用于长连接应用Overhead(负载值)=activeconns(活动链接数) x 256+inactiveconns(非活 动链接数)
2、WLC:Weighted LC(权重最少链接) 默认调度方法Overhead=(activeconns x 256+inactiveconns)/weight
3、SED:Shortest Expection Delay, 初始连接高权重优先Overhead=(activeconns+1+inactiveconns) x 256/weight 但是,当node1的权重为1,node2的权重为10,经过运算前几次的调度都会被node2承接
4、NQ:Never Queue,第一轮均匀分配,后续SED
5、LBLC:Locality-Based LC,动态的DH算法,使用场景:根据负载状态实现正向代理
6、LBLCR:LBLC with Replication,带复制功能的LBLC,解决LBLC负载不均衡问题,从负载重的复制 到负载轻的RS
3.4在4.15版本内核以后新增调度算法
1.FO(Weighted Fai Over)调度算法:
常用作灰度发布 在此FO算法中,遍历虚拟服务所关联的真实服务器链表,找到还未过载(未设置IP_VS_DEST_F OVERLOAD标志)的且权重最高的真实服务器,进行调度 当服务器承接大量链接,我们可以对此服务器进行过载标记(IP_VS_DEST_F OVERLOAD),那么vs调度 器就不会把链接调度到有过载标记的主机中。
2.OVF(Overflow-connection)调度算法:
基于真实服务器的活动连接数量和权重值实现。将新连接调度到权重值最高的真实服务器,直到其活动 连接数量超过权重值,之后调度到下一个权重值最高的真实服务器,在此OVF算法中,遍历虚拟服务相关 联的真实服务器链表,找到权重值最高的可用真实服务器。一个可用的真实服务器需要同时满足以下条 件: 未过载(未设置IP_VS_DEST_F OVERLOAD标志) 真实服务器当前的活动连接数量小于其权重值 其权重值不为零
4.防火墙标签解决轮询错误
以http和https为例,当我们在RS中同时开放80和443端口,那么默认控制是分开轮询的,这样我们就出 现了一个轮询错乱的问题
当我第一次访问80被轮询到RS1后下次访问443仍然可能会被轮询到RS1上
防火墙标记解决轮询调度问题
FWM:FireWall Mark
MARK target 可用于给特定的报文打标记,
--set-mark value
其中:value 可为0xffff格式,表示十六进制数字借助于防火墙标记来分类报文,而后基于标记定义集群服 务:可将多个不同的应用使用同一个集群服务进行调度
实现方法:
在Director主机打标记
iptables -t mangle -A PREROUTING -d 192.168.0.100 -p tcp -m multiport --dports 80,443 -j MARK --set-mark 6666
ipvsadm -A -f 6666 -s rr
ipvsadm -a -f 6666 -r 192.168.0.101 -g
ipvsadm -a -f 6666 -r 192.168.0.102 -g
这样设置过后,防火墙就可以把两个端口的不同集群捆绑到一起,这样就解决了轮询错误问题。
相关文章:
LVS中NAT模式和DR模式实战讲解
1DR模式 DR:Direct Routing,直接路由,LVS默认模式,应用最广泛,通过为请求报文重新封装一个MAC首部进行 转发,源MAC是DIP所在的接口的MAC,目标MAC是某挑选出的RS的RIP所在接口的MAC地址;源 IP/PORT…...
写给小白程序员的一封信
文章目录 1.编程小白如何成为大神?大学新生的最佳入门攻略2.程序员的练级攻略3.编程语言的选择4.熟悉Linux5.学会git6.知道在哪寻求帮助7.多结交朋友8.参加开源项目9.坚持下去 1.编程小白如何成为大神?大学新生的最佳入门攻略 编程已成为当代大学生的必…...
Leaf分布式ID
文章目录 系统对Id号的要求UUIDsnowflakeLeafLeaf-snowflakeLeaf-segmentMySQL自增主键segment双buffer 系统对Id号的要求 1、业务 1)全局唯一性:不能出现重复的ID号,既然是唯一标识,这是最基本的要求 2)趋势递增&a…...
Starrocks解析json数组
json数据 [{"spec": "70g/支","unit": "支","skuId": "1707823848651276346","amount": 6,"weight": 70,"spuName": "伊利 甄稀 苦咖啡味雪糕 流心冰淇淋 70g/支",&quo…...
安卓基本布局(下)
TableLayout 常用属性描述collapseColumns设置需要被隐藏的列的列号。shrinkColumns设置允许被伸缩的列的列号。stretchColumns设置允许被拉伸的列的列号。 <TableLayout xmlns:android"http://schemas.android.com/apk/res/android"android:id"id/TableL…...
Python中使用正则表达式
摘要: 正则表达式,又称为规则表达式,它不是某种编程语言所特有的,而是计算机科学的一个概念,通常被用来检索和替换某些规则的文本。 一.正则表达式的语法 ①行定位符 行定位符就是用来描述字符串的边界。"^&qu…...
三大口诀不一样的代码,小小的制表符和换行符玩的溜呀
# 小案例,打印输出加法口诀 for i in range(1,10):for j in range(1,10):if j>i:breakprint(f"{j}{i}{ji}".strip(),end\t)print() print(\n) for i in range(1,10):for j in range(1,10):if j>i:breakprint(f"{j}x{i}{j*i}",end\t)print…...
[qt] 线程等待与唤醒
对于生产者与消费者的数据处理的另一种好的解决方法是使用QWaitCondition类,允许线程在一定的条件下唤醒其他多个线程来共同处理。 一 定义公共变量 DataSize: 生产者生产数据的大小BufferSize: 也就是这个缓冲区的大小,每个单元是一个int,也有可能是一个链表,结构…...
Springboot 实现 Modbus Rtu 协议接入物联网设备
Modbus RTU 技术教程 引言 Modbus是一种开放标准的通信协议,它最初由Modicon(现施耐德电气)在1979年发布,旨在让可编程逻辑控制器(PLC)之间能够进行通信。随着时间的发展,Modbus已经成为工业自动化领域中最常用的通信协议之一,尤其适用于连接工业电子设备。本文将详细…...
鸿蒙笔记--装饰器
这一节主要了解一下鸿蒙里的装饰器,装饰器是一种特殊的语法结构,用于装饰类、结构体、方法以及变量; 1 Component在鸿蒙(HarmonyOS)开发中扮演着重要角色,主要用于定义可重用的UI组件,主要作用:1)组件化:Component装饰…...
不同环境下RabbitMQ的安装-3 操作RabbitMQ
前面两篇从不同环境下RabbitMQ的安装-1 为什么要使用消息服务 到同环境下RabbitMQ的安装-2 ARM架构、X86架构、Window系统环境下安装RabbitMQ介绍了关于如何在ARM架构、X86架构和Window系统下如何安装,各位小伙伴可以根据自己的实际开发场景参考安装。 到本篇是一些…...
postgregSQL配置vector插件
1.下载vector 下载vector:https://pgxn.org/dist/vector/0.5.1/ 放在:C:\Program Files\PostgreSQL\vector-0.5.1 2.安装Visual Studio 2022 下载:https://visualstudio.microsoft.com/zh-hans/downloads/ 安装Visual Studio是为了C编译环…...
PUMA论文阅读
PUMA: Efficient Continual Graph Learning with Graph Condensation PUMA:通过图压缩进行高效的连续图学习 ABSTRACT 在处理流图时,现有的图表示学习模型会遇到灾难性的遗忘问题,当使用新传入的图进行学习时,先前学习的这些模…...
算法学习day31(动态规划)
一、比特位计数 给你一个整数 n ,对于 0 < i < n 中的每个 i ,计算其二进制表示中 1 的个数 ,返回一个长度为 n 1 的数组 ans 作为答案。 输入:n 2 输出:[0,1,1] 解释:0 --> 0 1 --> 1 2 -…...
嵌入式学Day25---Linux软件编程---线程间通信
目录 编辑 一、线程的分离属性 1.1.什么是分离属性 1.2.分离属性相关函数接口 1.初始化线程属性-pthread_attr_init() 2.销毁线程属性-pthread_attr_destory() 3.设置线程属性-pthread_setdetachstate() 1.3.注意 二、互斥锁 2.1.资源 2.2.互斥锁 1.什么是互斥锁 2.互…...
【实现100个unity特效之17】在unity中使用shader和ShaderGraph分别实现模糊特定层,高斯模糊效果
最终效果 Unity通过Shader来模糊场景画面 参考:【游戏开发小技】Unity通过UI全屏图来模糊场景画面(Shader | 模糊 | 滤镜 | Blur) ShaderGraph实现图片的高斯模糊 参考:【游戏开发实战】Unity ShaderGraph实现图片的高斯模糊效…...
Unity补完计划 之 SpriteEditer Multiple
本文仅作笔记学习和分享,不用做任何商业用途 本文包括但不限于unity官方手册,unity唐老狮等教程知识,如有不足还请斧正 1. SpriteEditer Multiple Automatic slicing - Unity 手册 这是用于裁剪图集的模式 应用之后精灵编辑器会看到Slice亮…...
C++ IOStream
IOStream 类流特性 不可赋值和复制缓冲重载了<< >> 状态位 示例 状态位操作函数coutcin getget(s,n)/get(s,n,d):getline otherif(!fs)/while(cin) operator void*()与 operator!()代码示例 File Stream open 函数 文件打开方式 文件读写 读写接口 一次读一个字符…...
2024/8/8训练
A - 无线网络整点栅格统计 题目链接 算法:模拟 题目大意 给你一个n*m的网格,然后输出每一个点作为顶点能构成的正方形数量(可以为斜正方形). 算法思路 本身题目数据是很小的,可以通过n^2的时间复杂度枚举每一个顶点,然后再通过n平方的时间复杂度枚举出另一个对角顶点,判断…...
项目的小结
项目场景: 作业的发布,打回 。 学生端做作业 由作业的state来确定作业是否上交,批改,打回作业。 实体类的建立,还有各种成员变量的设计要满足需求 问题描述 问题: 在进行上传作业后,老师端…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
