恒创科技:IPv4 和 IPv6 之间的主要区别
IPv4 和 IPv6 是互联网协议 (IP) 系统中使用的两种版本的 IP 地址格式。虽然它们的主要目的是准确识别、发送和接收互联网上的数据,但 IPv4 和 IPv6 之间存在许多关键差异。
地址格式
IPv4 采用 32 位格式,由 4 个数值(称为八位字节)表示,以点分十进制表示法分隔。此格式允许大约 43 亿个唯一地址。典型的 IPv4 地址如下:192.0.2.1
IPv6 地址采用 128 位格式,由八个 16 位十六进制段(称为“十六进制”)组成,以冒号 (:) 分隔。每个十六进制数可以具有从 0000 到 FFFF 的字母数字值,允许大约 340 个十亿亿个唯一地址。
典型的 IPv6 地址如下:2001:0db8:85a3:0000:0000:8a2e:0370:7334
如果有连续的零组,可以用连续的冒号 (:) 缩短地址。例如,我们可以从上面的地址中删除零串,将其重写为2001:0db8:85a3::8a2e:0370:7334这称为零压缩。
地址配置
IPv4 地址通常手动配置或使用动态主机配置协议 (DHCP) 等协议动态分配。
IPv6 地址可以通过无状态自动配置来分配,其中设备根据网络前缀生成自己的地址,或者通过 DHCPv6(IPv6 的动态主机配置协议)来分配。
标头结构
IPv4 报头大小固定,包含源地址和目标地址、报头长度和服务类型等字段。
IPv6 报头更加简化,大小固定为 40 字节。其中包括源地址和目标地址、流量类别、流标签和下一个报头等字段。
子网划分
IPv4 有三个主要子网类别(A、B 和 C),每个类别定义网络的大小。A 类地址用于大型网络,B 类用于中型网络,C 类用于小型网络。
IPv6 不使用类别,而是利用网络前缀的长度来确定子网的大小。例如,网络“2001:0db8:85a3:0000::/48”表示地址的前 48 位是固定的网络前缀(即无法更改),但其余 80 位可以细分为子网。
安全
IPv4 不包括对 IPsec(Internet 协议安全)的本机支持,需要额外的协议和配置才能实现安全通信。
IPv6 包含对 IPsec 的内置支持,为互联网上设备之间的安全通信和身份验证提供了一个框架。
网络通信
IPv4 支持一对一通信的单播、一对多通信的多播和一对所有通信的广播。
IPv6 支持单播、多播和任播通信。IPv6 不使用广播,而是主要依靠多播来实现 IPv4 中的多播和广播功能。
任播采用一对近通信,其中数据包从一个发送方发送到共享相同任播地址的几个接收方中最近的一个。
为什么要迁移到 IPv6?
地址耗尽: IPv4 地址空间有限,许多地区已耗尽,因此获取新的 IPv4 地址非常困难。IPv6 提供了更大的地址空间,可提供大量地址来容纳日益增多的互联网连接设备。
可扩展性: IPv6 更大的地址空间允许更好的可扩展性,从而支持互联网的持续增长和新设备的普及,而不受 IPv4 地址短缺的限制。
效率: IPv6 消除了 IPv4 中使用的网络地址转换 (NAT) 等技术的需求,从而节省了地址空间。NAT 可能会带来复杂性和限制,例如点对点通信的困难和增加的管理开销。IPv6 丰富的地址空间简化了网络管理并增强了端到端连接。
安全性: IPv6 包含对 IPsec(Internet 协议安全)的内置支持,与 IPv4 相比,可提供增强的安全功能。IPsec 可用于加密和验证 IPv6 流量,确保通过网络传输的数据的机密性、完整性和真实性。
面向未来: IPv6 旨在解决 IPv4 的局限性和挑战,并适应未来的技术进步和要求。随着互联网的发展和新技术的出现,IPv6 为持续创新和增长提供了坚实的基础。
相关文章:

恒创科技:IPv4 和 IPv6 之间的主要区别
IPv4 和 IPv6 是互联网协议 (IP) 系统中使用的两种版本的 IP 地址格式。虽然它们的主要目的是准确识别、发送和接收互联网上的数据,但 IPv4 和 IPv6 之间存在许多关键差异。 地址格式 IPv4 采用 32 位格式,由 4 个数值(称为八位字节)表示,以点…...

TinyWebserver的复现与改进(1):服务器环境的搭建与测试
计划开一个新坑, 主要是复现qinguoyi/TinyWebServer项目,并且使用其它模块提升性能。 本文开发服务器配置:腾讯云轻量级服务器,CPU - 2核 内存 - 2GB,操作系统 Ubuntu Server 18.04.1 LTS 64bit 打开端口 需要打开服务器3306、80…...

【Python】练习题附带答案
1、使用for循环实现输出9*9乘法表 代码: 2、写代码实现累乘计算器。 示例:用户输入:5*9*87输出答案:3915 代码: 3、写代码实现,循环提示用户输入的内容(Q/q终止循环),…...

Springboot集成Proguard生成混淆jar包
背景 当我们需要将 JAR 包交付给第三方时,常常担心代码可能会被反编译。因此,对 JAR 包进行混淆处理显得尤为重要。 市面上有许多 JAR 包源码混淆工具,但真正能稳定投入使用的并不多。例如,ClassFinal (ClassFinal: Java字节码加…...

什么是NLP分词(Tokenization)
在自然语言处理和机器学习的领域里,咱们得聊聊一个超基础的技巧——就是“分词”啦。这个技巧啊,就是把一长串的文字切分成小块,让机器能更容易地“消化”。这些小块,不管大小,单个的字符也好,整个的单词也…...
基于深度学习的图像伪造检测
基于深度学习的图像伪造检测主要利用深度学习技术来识别和检测伪造的图像内容,尤其是在生成对抗网络(GAN)等技术发展的背景下,伪造图像的逼真程度大大提升。图像伪造检测在信息安全、隐私保护、司法鉴定等领域具有重要意义。以下是…...
Windows11 WSL2 Ubuntu编译安装perf工具
在Windows 11上通过WSL2安装并编译perf工具(Linux性能分析工具)可以按以下步骤进行。perf工具通常与Linux内核一起发布,因此你需要确保你的内核版本和perf版本匹配。以下是安装和编译perf的步骤: 1. 更新并升级系统 首先&#x…...

探索算法系列 - 前缀和算法
目录 一维前缀和(原题链接) 二维前缀和(原题链接) 寻找数组的中心下标(原题链接) 除自身以外数组的乘积(原题链接) 和为 K 的子数组(原题链接) 和可被 …...

Stable Diffusion绘画 | 提示词基础原理
提示词之间使用英文逗号“,”分割 例如:1girl,black long hair, sitting in office 提示词之间允许换行 但换行时,记得在结尾添加英文逗号“,”来进行区分 权重默认为1,越靠前权重越高 每个提示词自身的权重默认值为1,但越靠…...
利用python写一个可视化的界面
要利用Python编写一个可视化界面,你可以使用一些图形库来实现,例如Tkinter、PyQt、wxPython等。以下是一个使用Tkinter的示例代码: import tkinter as tk# 创建一个窗口对象 window tk.Tk()# 定义一个按钮点击事件的处理函数 def buttonCli…...
第13节课:Web Workers与通信——构建高效且实时的Web应用
目录 Web Workers简介Web Workers的基本概念创建和使用Web WorkersWeb Workers的应用场景 WebSocket通信WebSocket的基本概念创建和使用WebSocketWebSocket的应用场景 实践:使用Web Workers和WebSocket示例:使用Web Workers进行大数据集处理示例…...
pam_pwquality.so模块制定密码策略
目录 设置密码策略的方法pam_pwquality.so配置详解pam_pwquality.so默认密码规则pam_pwquality.so指定密码规则问题补充设置密码策略的方法 这篇文章重点讲通过pam_pwquality.so模块配置密码策略 指定pam_pwquality.so模块参数Centos7开始使用pam_pwquality模块进行密码复杂度…...

spark3.3.4 上使用 pyspark 跑 python 任务版本不一致问题解决
问题描述 在 spark 上跑 python 任务最常见的异常就是下面的版本不一致问题了: RuntimeError: Python in worker has different version 3.7 than that in driver 3.6, PySpark cannot run with different minor versions. Please check environment variables PY…...

处理Pandas中的JSON数据:从字符串到结构化分析
在数据科学领域,JSON作为一种灵活的数据交换格式,被广泛应用于存储和传输数据。然而,JSON数据的非结构化特性在进行数据分析时可能会带来一些挑战。本文将指导读者如何使用Pandas库将DataFrame中的JSON字符串列转换为结构化的表格数据&#x…...

国内的 Ai 大模型,有没有可以上传excel,完成数据分析的?
小说推文AI视频生成:小说文案智能分镜智能识别角色和场景批量Ai绘图自动配音添加音乐一键合成视频百万播放量https://aitools.jurilu.com/ 有啊!智谱清言、KiMI、豆包都可以做数分,在计算领域尤其推荐智谱清言,免费、快速还好使&a…...
Spring: jetcache
一、介绍 JetCache是一个基于Java的缓存系统封装,提供统一的API和注解来简化缓存的使用。 JetCache提供了比SpringCache更加强大的注解,可以原生的支持TTL(Time To Live,即缓存生存时间)、两级缓存、分布式自动…...

什么是分布式事务?
分布式事务跨越多个系统,确保所有操作一起成功或失败,这对于在现代计算环境中跨不同地理位置分离的资源维护数据完整性和一致性至关重要。 1. 为什么需要分布式事务? 分布式事务的需求源于确保分布式计算环境中多个独立系统或资源之间的数据…...
深入Java内存区域:堆栈、方法区与程序计数器的奥秘
引言 在Java开发过程中,合理地管理和利用内存资源对于提高程序的运行效率至关重要。特别是在大型项目或高并发场景下,一个小小的内存泄漏就可能导致整个系统崩溃。因此,掌握Java内存区域的相关知识,不仅能帮助我们更好地理解程序…...

【ML】异常检测、二分类问题
【ML】异常检测、二分类问题 1. 异常检测、二分类问题1.1 异常检测(Anomaly Detection)1.2 二分类问题(Binary Classification)1.3 异常检测与二分类问题的对比1.4 总结 2. 模型额训练与评估3. 为什么会出现比较高的误识别&#x…...
8.8-配置python3环境+python语法的使用
1.环境 python2 ,python3 [rootpython ~]# yum list installed|grep python [rootpython ~]# yum list installed|grep epel epel-release.noarch 7-11 extras #安装python3 [rootpython ~]# yum -y install python3…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...

如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...

HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...