Redis面试题大全
文章目录
- Redis有哪几种基本类型
- Redis为什么快?
- 为什么Redis6.0后改用多线程?
- 什么是热key吗?热key问题怎么解决?
- 什么是热Key?
- 解决热Key问题的方法
- 什么是缓存击穿、缓存穿透、缓存雪崩?
- 缓存击穿
- 缓存穿透
- 缓存雪崩
- Redis的过期策略
- Redis持久化方式有哪些?区别?
- Redis高可用
- 1. 主从复制(Master-Slave Replication)
- 2. Sentinel(哨兵)
- 3. Cluster(集群)
Redis有哪几种基本类型
Redis 提供了丰富的数据类型,这些数据类型使得 Redis 不仅仅是一个简单的键值存储系统,而是一个多功能的 NoSQL 数据库。下面是 Redis 支持的主要数据类型及简介:
-
String(字符串)
最基本的数据类型,可以存储单个值,如字符串、整型或浮点型数据。适用于大多数简单的键值存储需求。 -
Hashes(哈希)
哈希是一个键值对的集合,每个键都是一个字段名,值可以是任意类型。哈希非常适合存储对象,比如用户信息,其中每个字段代表用户的一个属性。 -
Lists(列表)
列表是由字符串元素构成的有序集合,可以看作是一个双端队列。可以在列表的头部或尾部添加或弹出元素,常用于消息队列或任务队列。 -
Sets(集合)
集合是一组无序的不重复的字符串元素。集合成员是唯一的,可以进行交集、并集和差集等集合运算,适用于处理唯一元素的集合。 -
Sorted Sets(有序集合)
类似于集合,但每个成员都有一个分数(score)与其关联,以此来确定成员的排序。有序集合可以高效地获取指定范围内的成员,适用于排行榜、时间序列数据等场景。
详细的介绍可以看文章:Redis的几种基本类型详解
Redis为什么快?
Redis之所以非常快速,主要归功于以下几个设计特点和技术优势:
-
内存存储:
Redis将所有的数据都保存在主服务器的内存中,读写速度极快,不受磁盘I/O速度的影响。由于内存访问速度远高于硬盘,这大大提升了数据的读取和写入效率。 -
非阻塞架构:
Redis采用了事件驱动的非阻塞I/O模型,可以同时处理多个客户端请求,无需等待慢速的I/O操作完成,提高了并发处理能力。 -
多路复用器(epoll/kqueue):
Redis使用了高效的事件处理器,如Linux下的epoll和BSD下的kqueue,这些机制可以让Redis在高负载下仍然保持良好的性能。 -
异步数据交换:
在主从复制和持久化过程中,Redis采用异步方式处理背景任务,避免影响主线程的工作效率,保证在线服务的速度不受影响。 -
精简的数据结构:
Redis提供了多种高度优化的数据结构(如跳跃表、压缩列表、整数集合),针对不同的应用场景进行了专门的设计,在节省空间的同时也加快了操作速度。 -
单线程模型:
Redis采用单线程模型处理命令请求,避免了复杂的锁竞争问题,简化了内部调度流程,减少了上下文切换带来的开销。
为什么Redis6.0后改用多线程?
redis使用多线程并非是完全摒弃单线程,redis还是使用单线程模型来处理客户端的请求,只是使用多线程来处理数据的读写和协议解析,执行命令还是使用单线程。
需要注意的是,Redis的多线程仅限于后台任务如AOF、BGSAVWE、IO等,对于数据处理和客户端请求的处理依然保持单线程,这是因为单线程模型可以避免复杂的并发控制问题,保证数据的一致性和安全性。多线程的引入主要是为了释放CPU资源,让主线程专注于更关键的实时数据处理工作。
什么是热key吗?热key问题怎么解决?
什么是热Key?
在分布式缓存系统中,热Key指的是那些访问频率非常高,以至于对整个系统的性能产生负面影响的键值。
解决热Key问题的方法
- 分散热点
-
Key前缀随机化:通过对Key增加随机前缀,可以使原本相同的Key分布到不同的节点上,从而分散请求的压力。
-
一致性Hash:使用一致性Hash算法可以更好地均衡各个节点间的负载,避免单一节点成为瓶颈。
- 缓存更新策略
-
延时双删法:即“Cache Aside”模式的变体,先删除缓存再更新数据库,然后再异步更新缓存,这样即使缓存失效,也能防止所有请求立即打到数据库。
-
加锁更新:在更新热Key时,可以使用分布式锁,确保同一时间内只有一个进程能够更新这个Key,其他请求则可以从旧缓存中读取数据,直到新数据准备好。
- 缓存降级
- 备用数据源:当热Key失效时,可以暂时使用预先准备好的静态数据或默认值作为替代,避免直接访问数据库。
- 读写分离
- 对于读多写少的场景,可以考虑将读操作和写操作分离,使用只读副本应对大部分读请求,减少主节点的负载。
- 限流与熔断
-
限流:对访问频率过高的Key实施限流措施,避免过度消耗资源。
-
熔断:当检测到某个Key的访问异常时,自动切断对该Key的访问,直到恢复正常。
什么是缓存击穿、缓存穿透、缓存雪崩?
缓存击穿
缓存击穿的概念就是单个key并发访问过高,过期时导致所有请求直接打到db上,这个和热key的问题比较类似,只是说的点在于过期导致请求全部打到DB上而已。
解决方案:
加锁更新,比如请求查询A,发现缓存中没有,对A这个key加锁,同时去数据库查询数据,写入缓存,再返回给用户,这样后面的请求就可以从缓存中拿到数据了。
将过期时间组合写在value中,通过异步的方式不断的刷新过期时间,防止此类现象。

缓存穿透
缓存穿透是指查询不存在缓存中的数据,每次请求都会打到DB,就像缓存不存在一样。

针对这个问题,加一层布隆过滤器。布隆过滤器的原理是在你存入数据的时候,会通过散列函数将它映射为一个位数组中的K个点,同时把他们置为1。
这样当用户再次来查询A,而A在布隆过滤器值为0,直接返回,就不会产生击穿请求打到DB了。
显然,使用布隆过滤器之后会有一个问题就是误判,因为它本身是一个数组,可能会有多个值落到同一个位置,那么理论上来说只要我们的数组长度够长,误判的概率就会越低,这种问题就根据实际情况来就好了。

缓存雪崩
当某一时刻发生大规模的缓存失效的情况,比如你的缓存服务宕机了,会有大量的请求进来直接打到DB上,这样可能导致整个系统的崩溃,称为雪崩。雪崩和击穿、热key的问题不太一样的是,他是指大规模的缓存都过期失效了。

针对雪崩几个解决方案:
针对不同key设置不同的过期时间,避免同时过期
限流,如果redis宕机,可以限流,避免同时刻大量请求打崩DB
二级缓存,同热key的方案。
Redis的过期策略
redis主要有2种过期删除策略
惰性删除
惰性删除指的是当我们查询key的时候才对key进行检测,如果已经达到过期时间,则删除。显然,他有一个缺点就是如果这些过期的key没有被访问,那么他就一直无法被删除,而且一直占用内存。
定期删除
定期删除指的是redis每隔一段时间对数据库做一次检查,删除里面的过期key。由于不可能对所有key去做轮询来删除,所以redis会每次随机取一些key去做检查和删除。
那么定期+惰性都没有删除过期的key怎么办?
假设redis每次定期随机查询key的时候没有删掉,这些key也没有做查询的话,就会导致这些key一直保存在redis里面无法被删除,这时候就会走到redis的内存淘汰机制。
volatile-lru:从已设置过期时间的key中,移除最近最少使用的key进行淘汰
volatile-ttl:从已设置过期时间的key中,移除将要过期的key
volatile-random:从已设置过期时间的key中随机选择key淘汰
allkeys-lru:从key中选择最近最少使用的进行淘汰
allkeys-random:从key中随机选择key进行淘汰
noeviction:当内存达到阈值的时候,新写入操作报错
Redis持久化方式有哪些?区别?
Redis 提供了两种主要的持久化方式:RDB (Redis Database Backup) 和 AOF (Append Only File)。
RDB
使用定时记录某个时间点的内存快照,将数据存储到磁盘中进行持久化。
所以,可能存在数据丢失的风险,在保存周期内发生故障就会丢失数据,但重启后数据恢复速度相较于AOF快。
AOF
AOF 记录每一次写操作命令,类似于事务日志,可以追加到文件末尾,因此不会覆盖已有的数据。
所以相较于RDB数据完整性好,但重启需要重新加载所有命令,启动速度慢。
Redis高可用
Redis 高可用性的实现主要包括以下几种方式,每种方法都有其特定的适用场景和优缺点:
1. 主从复制(Master-Slave Replication)
- 原理:通过建立一个或多个从服务器(slave),从主服务器(master)同步数据。从服务器可以用来处理读请求,实现读写分离,提高系统性能;同时,当主服务器宕机时,可以从中服务器中选择一台升级为主服务器,实现故障转移。
- 优点:简单易行,可以实现读写分离,提高读操作的性能。
- 缺点:写操作依然是单点,如果主服务器失败,需要手动干预进行故障转移。

2. Sentinel(哨兵)
- 原理:Sentinel 是一组运行在独立 Redis 服务器上的进程,它们负责监控主从服务器的状态,当主服务器不可用时,Sentinel 能够自动选出一个新的主服务器,实现故障转移。
- 优点:自动化故障检测和故障转移,降低了运维难度。
- 缺点:Sentinel 本身也需要管理,增加了系统的复杂度。

3. Cluster(集群)
- 原理:Redis Cluster 是一种原生的集群解决方案,它不仅提供了数据分区的能力,还可以实现自动故障转移。每个节点都是一个完整的 Redis 实例,数据按照哈希槽的方式分布到不同节点上。
- 优点:支持水平扩展,可以动态添加或删除节点;自动故障转移,高可用性较好。
- 缺点:配置相对复杂,不适合简单的读写分离场景;不支持所有 Redis 命令,有一定的限制。

相关文章:
Redis面试题大全
文章目录 Redis有哪几种基本类型Redis为什么快?为什么Redis6.0后改用多线程?什么是热key吗?热key问题怎么解决?什么是热Key?解决热Key问题的方法 什么是缓存击穿、缓存穿透、缓存雪崩?缓存击穿缓存穿透缓存雪崩 Redis…...
【langchain学习】BM25Retriever和FaissRetriever组合 实现EnsembleRetriever混合检索器的实践
展示如何使用 LangChain 的 EnsembleRetriever 组合 BM25 和 FAISS 两种检索方法,从而在检索过程中结合关键词匹配和语义相似性搜索的优势。通过这种组合,我们能够在查询时获得更全面的结果。 1. 导入必要的库和模块 首先,我们需要导入所需…...
【C语言】预处理详解(上)
文章目录 前言1. 预定义符号2. #define 定义常量3. #define定义宏4. 带有副作用的宏参数5. 宏替换的规则 前言 在讲解编译和链接的知识点中,我提到过翻译环境中主要由编译和链接两大部分所组成。 其中,编译又包括了预处理、编译和汇编。当时,…...
uni-app内置组件(基本内容,表单组件)()二
文章目录 一、 基础内容1.icon 图标2.text3.rich-text4.progress 二、表单组件1.button2.checkbox-group和checkbox3.editor 组件4.form5.input6.label7.picker8.picker-view 和 picker-view-column9.radio-group 和 radio10.slider11.switch12.textarea 一、 基础内容 1.icon…...
linux搭建redis超详细
1、下载redis包 链接: https://download.redis.io/releases/ 我以7.0.11为例 2、上传解压 mkdir /usr/local/redis tar -zxvf redis-7.0.11.tar.gz3、进入redis-7.0.11,依次执行 makemake install4、修改配置文件redis.conf vim redis.conf为了能够远程连接redis…...
Flink-DataWorks第二部分:数据集成(第58天)
系列文章目录 数据集成 2.1 概述 2.1.1 离线(批量)同步简介 2.1.2 实时同步简介 2.1.3 全增量同步任务简介 2.2 支持的数据源及同步方案 2.3 创建和管理数据源 文章目录 系列文章目录前言2. 数据集成2.1 概述2.1.1 离线(批量)同步…...
4个从阿里毕业的P7打工人,当起了包子铺的老板
吉祥知识星球http://mp.weixin.qq.com/s?__bizMzkwNjY1Mzc0Nw&mid2247483727&idx1&sndb05d8c1115a4539716eddd9fde4e5c9&chksmc0e47813f793f105017fb8551c9b996dc7782987e19efb166ab665f44ca6d900210e6c4c0281&scene21#wechat_redirect 《网安面试指南》h…...
javaweb_07:分层解耦
一、三层架构 (一)基础 在请求响应中,将代码都写在controller中,看起来内容很复杂,但是复杂的代码总体可以分为:数据访问、逻辑处理、接受请求和响应数据三个部分。在程序中我们尽量让一个类或者一个方法…...
调用 Python 开源库,获取油管英文视频的手动或自动英文srt字幕,以及自动中文简体翻译srt字幕
前提条件 非常抱歉,这个程序就是个雏形,非常不完善,输入需要手动编辑,凑活着可以用,请自己完善吧。 开源声明:此文代码引用了一个开源MIT License的Python库,其他代码是本人自写自用。你可以随…...
UDP协议实现通信与数据传输(创建客户端和服务器)
目录 一、UDP (传输层,用户数据报协议) 二、服务器Server的创建 三、客户端Client的创建 四、效果实现(描述) 一、UDP (传输层,用户数据报协议) UDP(User Datagram Pr…...
【红黑树】
红黑树 小杨 红黑树的概念 红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍&am…...
排序算法——简单选择排序
一、算法原理 简单选择排序是一种基本的排序算法,其原理是每次从未排序的元素中选择最小(或最大)的元素,然后与未排序部分的第一个元素交换位置,直到所有元素都被排序。 二、算法实现流程 简单选择排序法(Simple Se…...
OpenAI API推出结构化输出功能
每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...
Python 异步编程:Sqlalchemy 异步实现方式
SQLAlchemy 是 Python 中最流行的数据库工具之一,在新版本中引入了对异步操作的支持。这为使用异步框架(如 FastAPI)开发应用程序带来了极大的便利。在这篇文章中,简单介绍下 SQLAlchemy 是如何利用 Greenlet 实现异步操作的。 什…...
父类引用指向子类对象
在 Java 中,父类引用可以指向子类对象,这是多态的一种表现。这种特性允许你使用父类的引用来操作子类对象,从而实现更灵活和可扩展的代码设计。 基本概念 多态:父类引用可以指向子类对象。这使得你可以用统一的接口处理不同的对象…...
分享一个基于Spring Boot的面向社区的智能化健康管理系统的设计与实现(源码、调试、LW、开题、PPT)
💕💕作者:计算机源码社 💕💕个人简介:本人 八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流&…...
【扒代码】reduction参数是什么
model DensityMapRegressor(in_channels256, reduction8)reduction 参数在 DensityMapRegressor 类中用于决定模型在上采样过程中的层级配置。具体来说,它决定了上采样过程中使用多少个 UpsamplingLayer,从而影响输出的分辨率。 reduction 参数的作用 …...
Python,Spire.Doc模块,处理word、docx文件,极致丝滑
Python处理word文件,一般都是推荐的Python-docx,但是只写出一个,一句话的文件,也没有什么样式,就是36K。 再打开word在另存一下,就可以到7-8k,我想一定是python-docx的问题,但一直没…...
redis的安装与命令
一、redis与memcache总体对比 1.性能 Redis:只使用单核,平均每一个核上Redis在存储小数据时比Memcached性能更高。 Memcached:可以使用多核,而在100k以上的数据中,Memcached性能要高于Redis。 2.内存使用效率 Mem…...
【C++】特殊类设计类型转换
目录 💡前言一,特殊类设计1. 请设计一个类,不能被拷贝2. 请设计一个类,只能在堆上创建对象3. 请设计一个类,只能在栈上创建对象4. 请设计一个类,不能被继承5. 请设计一个类,只能创建一个对象(单…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
