当前位置: 首页 > news >正文

YOLOv8改进 | 主干网络 | 用EfficientNet卷积替换backbone【教程+代码 】

 秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


专栏目录 :《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有80+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进——点击即可跳转


卷积神经网络通常在固定的资源预算下开发,如果资源更充足,则会进行扩展以提高准确性。在EfficientNet的论文中,作者系统地研究了模型扩展,并发现仔细平衡网络的深度、宽度和分辨率可以带来更好的性能。基于这一观察,提出了一种新的扩展方法,该方法使用简单但高效的复合系数统一扩展深度/宽度/分辨率的各个维度。证明了将此方法应用于扩展MobileNets和ResNet的有效性。为了更进一步,我们使用神经架构搜索来设计一个新的基准网络,并对其进行扩展以获得一系列模型,称为EfficientNets,这些模型的准确性和效率都优于先前的ConvNets。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址YOLOv8改进——更新各种有效涨点方法——点击即可跳转 订阅学习不迷路   

目录

1. 原理

2.  将EfficientNet添加到YOLOv8中

2.1 EfficientNet的代码实现

2.2 更改init.py文件

2.3 添加yaml文件

相关文章:

YOLOv8改进 | 主干网络 | 用EfficientNet卷积替换backbone【教程+代码 】

秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转 💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 专栏目录 :《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有80+篇内容,内含各种Head检测头、损失函数Loss、…...

数据库规范化设计 5大基本原则

规范化设计原则是数据库设计的基本原则,有助于减少数据冗余,提高数据一致性和完整性,简化数据管理,增强数据安全性,对整个开发项目至关重要。而缺乏规范化设计会导致数据冗余,增加存储成本,引发…...

【nginx】解决k8s中部署nginx转发不会自动更新域名解析启动失败的问题

文章目录 1. 问题2.解决办法3.扩展说明3.1 DNS解析阶段划分3.2 问题说明3.2.1 先看/etc/resolv.conf说明3.2.2 针对第一个问题3.2.3 针对第二个问题 【后端】NginxluaOpenResty高性能实践 参考: https://blog.csdn.net/u010837612/article/details/123275026 1. 问…...

LeetCode637 二叉树的层平均值

前言 题目: 637. 二叉树的层平均值 文档: 代码随想录——二叉树的层平均值 编程语言: C 解题状态: 求取平均值的时候出现了点问题 思路 C中,浮点数的相加会产生精度误差,求取平均值时最好只在最后一步进行…...

王学岗ASM

服务发现 package com.example.testasm;import android.content.Context; import android.os.Bundle;import androidx.activity.EdgeToEdge; import androidx.appcompat.app.AppCompatActivity; import androidx.core.graphics.Insets; import androidx.core.view.ViewCompat;…...

【数据结构】—— 队列

1、队列的概念2、队列的结构如何选择合适的数据结构实现队列(数组or链表) 3、队列的链式存储3.1 队列的链式存储结构3.2 队列的常见接口3.3 队列的接口实现初始化判空入队列出队列获取队头元素获取队尾元素获取节点个数销毁 3.4 源代码 4、队列的顺序存储…...

vue中openlayers过滤高亮显示某个图层

vue中openlayers过滤高亮显示某个图层 openlayers库没有直接支持这样设置,所以可以使用库:ol-ext,地址:https://viglino.github.io/ol-ext/examples/filter/map.filter.crop.html 效果: 关键代码: /**…...

WPF篇(11)-ToolTip控件(提示工具)+Popup弹出窗口

ToolTip控件 ToolTip控件继承于ContentControl,它不能有逻辑或视觉父级,意思是说它不能以控件的形式实例化,它必须依附于某个控件。因为它的功能被设计成提示信息,当鼠标移动到某个控件上方时,悬停一会儿,…...

【mysql 第一篇章】系统和数据库的交互方法

一、宏观的查看系统怎么和数据库交互 在我们刚刚接触系统和数据库的时候不明白其中的原理,只知道系统和数据库是需要交互的。所以我们会理解成上图的形式。 二、MYSQL 驱动 随着我们的学习时间的加长以及对程序的了解,发现链接数据库是需要有别的工具辅…...

数据结构-位运算总结

位运算总结: 1.求位1的个数 191. 位1的个数 - 力扣(LeetCode) 有两种写法: 1.是把该数不断的去与0x1相与,得到该数的最后一位的值,然后判断他是不是1,再把该数更新一下整体往后移动一位也就…...

java 异常堆栈的由来

编写的程序代码内部错误产生的异常,如调用对象为空(空指针异常)、数组越界异常、除0异常等。这种通常称为未检查的异常(Runtime异常子类),在虚拟机中执行时会集中处理这些异常。其他运行中异常,通过throw语句主动抛出的…...

【推荐系统】【多任务学习】Progressive Layered Extraction (PLE)

Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations 文章目录 Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations1 论文出处2 背景2.1 背景介…...

java -转win32/win64免安装jre环境运行

由于java 转为exe,只能在装有JDK环境的电脑运行, 发给其他人也不能运行,缺少环境,程序自己背着jre走 1.先打好jar 包 2.使用exe4j 把jar包转成exe 运行程序 3.使用inno stup ,把exe运行程序加上jre环境 以下是具体实现…...

算法板子:容斥原理——求出 1∼n 中能被质数 p1,p2,…,pm 中的至少一个数整除的整数有多少个

1. 题目要点 1. 设:求1~10中能被质数2和3中至少一个数整除的数有多少个。1~10中能被质数2整除的数的集合记为S1{2,4,6,8,10},能被质数3整除的数的集合记为S2{3,6,9},能同时被质数2和3整数的数的集合为S1∩S2{6} 2. 这道题的目的是求S1∪S2∪S…...

用gurobipy求解带不等式约束条件的优化问题

1. 引入 在当今的数据驱动世界中,优化问题无处不在,从工程设计到经济模型,再到机器学习算法的调参,优化都是实现效率最大化、成本最小化或性能最优化的关键工具。 这里有一个典型的数学优化问题,目标是在给定的约束条…...

漏洞复现-Adobe ColdFusion 远程代码执行漏洞(CVE-2023-38203)

1.漏洞描述 Adobe ColdFusion是一种服务器端的Web应用开发平台。它由Adobe Systems开发,用于创建动态的、交互式的Web应用程序和网站。 Adobe ColdFusion在2018u17及之前版本、2021u7及之前版本和2023u1及之前版本中存在任意代码执行漏洞。该漏洞是由于反序列化不…...

Spring-MyBatis整合:No qualifying bean of type ‘XXX‘ available: ...

1.看一下核心配置中有没有导入myBatis配置 2.看一下service和dao有没有相应注解 3.看一下MyBatisConfig中有没有对sqlSessionFactory和mapperScannerConfigurer注释成bean对象以及有没有配置映射文件路径...

gitea docker 快捷安装部署

前言 在前一篇博文(什么是 Gitea?)中,我们详细介绍了gitea的功能特性,以及其与其它git服务器之间的特性多维度对比。 在本文中,我们将详细介绍gitea的快捷安装部署,docker方式! 1…...

CLAMP-1

一、信息收集 1、主机发现 nmap 192.168.236.0/24 2、端口扫描 nmap 192.168.236.173 -p- -A 3、目录扫描 dirb http://192.168.236.173 二、漏洞探测 访问80端口 访问 /nt4stopc/ 下面有一些问题,提示必须收集答案 都是一些判断题,对与错对应1与0&…...

Blender的Python编程介绍

在Blender这个免费的开源3D设计软件中,最值得称道的一点是可以用Python程序来辅助进行3D设计,我们可以通过Python来调整物体的属性,生成新的物体,甚至生成新的动画等等。 在最近的一个项目中,我用Blender制作了一个动…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案

引言 在分布式系统的事务处理中&#xff0c;如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议&#xff08;2PC&#xff09;通过准备阶段与提交阶段的协调机制&#xff0c;以同步决策模式确保事务原子性。其改进版本三阶段提交协议&#xff08;3PC&#xf…...

机器学习的数学基础:线性模型

线性模型 线性模型的基本形式为&#xff1a; f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法&#xff0c;得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...