当前位置: 首页 > news >正文

网络剪枝——network-slimming 项目复现

目录

文章目录

  • 目录
  • 网络剪枝——network-slimming 项目复现
    • clone 存储库
    • Baseline
      • vgg
        • 训练
        • 结果
      • resnet
        • 训练
        • 结果
      • densenet
        • 训练
        • 结果
    • Sparsity
      • vgg
        • 训练
        • 结果
      • resnet
        • 训练
        • 结果
      • densenet
        • 训练
        • 结果
    • Prune
      • vgg
        • 命令
        • 结果
      • resnet
        • 命令
        • 结果
      • densenet
        • 命令
        • 结果
    • Fine-tune
      • vgg
        • 训练
        • 结果
      • resnet
        • 训练
        • 结果
      • densenet
        • 训练
        • 结果
    • 模型大小计算脚本 param_counter.py
    • 结果汇总
      • CIFAR10

网络剪枝——network-slimming 项目复现

  • 【GiHnub】:Eric-mingjie/network-slimming: Network Slimming (Pytorch) (ICCV 2017) (github.com)
  • 【作者复现项目】:
  • 通过百度网盘分享的文件:network-slimming-regin.zip
    链接:https://pan.baidu.com/s/1vTJSLS5ZDjE8R8XaApW96A?pwd=t1z2
    提取码:t1z2
    • 仅以 CIFAR-10 为例,CIFAR-100 同理.
    • 提供中文README_zh-CN.md.
    • 包含 CIFAR-10/100 数据集data.cifar10data.cifar100.
    • 解决了 main.py 运行报错问题.
    • 加入了计算训练后模型的 Parameters 大小脚本param_counter.py.

clone 存储库

注:若 clone 作者复现项目,则忽略这一步,直接进入下一步;若想自行从头复现,则 clone 以下存储库.

  • 链接:https://pan.baidu.com/s/1nppPLKoiPbJPW60HOa2TxQ?pwd=ud89
    提取码:ud89


Baseline

vgg

训练
  • 【命令】:
python main.py --dataset cifar10 --arch vgg --depth 19

  • 这个报错通常出现在使用 Python 的multiprocessing库来创建进程时,尤其是在 Windows 操作系统上. 在 Windows 上,Python 的multiprocessing模块启动新进程的方式与 Linux 或 macOS 不同,它使用 “spawn” 来启动新进程,这意味着每个子进程都会从头开始执行脚本. 因此,如果在脚本顶层级别启动进程(而不是在受保护的if __name__ == '__main__':块中),每个子进程都会尝试再次启动子进程,从而导致无限递归和上述错误.
  • 为了解决这个问题,应 确保多进程代码(即main.py)位于if __name__ == '__main__':保护块内.
# 导入部分
...def main():...if __name__ == '__main__':main()
  • 再次运行命令,又报错:

  • 这个报错通常发生在尝试直接索引一个0维的张量(tensor)时. 在 PyTorch 中,0 维张量是一个单一值的张量,但是不能像普通的数组那样通过索引来访问。要从 0 维张量中获取其 Python 数值,需要使用.item()方法.
  • 为了解决这个问题,应该 使用.item()方法来替换所有.data[0]的用法
# 在 train 函数中
if batch_idx % args.log_interval == 0:print('Train Epoch: {} [{}/{} ({:.1f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))# 在 test 函数中
for data, target in test_loader:if args.cuda:data, target = data.cuda(), target.cuda()data, target = Variable(data), Variable(target)output = model(data)test_loss += F.cross_entropy(output, target, reduction='sum').item()  # sum up batch losspred = output.data.max(1, keepdim=True)[1]correct += pred.eq(target.data.view_as(pred)).cpu().sum()test_loss /= len(test_loader.dataset)
  • 再次运行命令就正常运行了:

结果
  • Terminal

  • 在 ./logs 生成文件checkpoint.pth.tarmodel_best.pth.tar

resnet

训练
  • 【命令】:
python main.py --dataset cifar10 --arch resnet --depth 164
结果

densenet

训练
  • 【命令】:
python main.py --dataset cifar10 --arch densenet --depth 40
结果


Sparsity

vgg

训练
  • 【命令】:
python main.py -sr --s 0.0001 --dataset cifar10 --arch vgg --depth 19
结果

resnet

训练
  • 【命令】:
python main.py -sr --s 0.00001 --dataset cifar10 --arch resnet --depth 164
结果

densenet

训练
  • 【命令】:
python main.py -sr --s 0.00001 --dataset cifar10 --arch densenet --depth 40
结果


Prune

vgg

命令
python vggprune.py --dataset cifar10 --depth 19 --percent 0.7 --model ./results/CIFAR10_results/CIFAR10-Vgg/Sparsity/model_best.pth.tar --save ./prunes

  • main.py同理,为了解决这个问题,应 确保多进程代码位于if __name__ == '__main__':保护块内
# 导入部分
...def main():...if __name__ == '__main__':main()
  • 之后就可以正常运行了.

结果
  • Terminal

  • 在./prunes生成文件prune.txtpruned.pth.tar

  • prune.txt中我们可以看到 Number of parametersTest accuracy

resnet

命令
python resprune.py --dataset cifar10 --depth 164 --percent 0.4 --model ./results/CIFAR10_results/CIFAR10-Resnet-164/Sparsity/model_best.pth.tar --save ./prunes
结果

densenet

命令
python denseprune.py --dataset cifar10 --depth 40 --percent 0.4 --model ./results/CIFAR10_results/CIFAR10-Densenet-40/Sparsity/model_best.pth.tar --save ./prunes
结果


Fine-tune

vgg

训练
  • 【命令】:
python main.py --refine ./results/CIFAR10_results/CIFAR10-Vgg/Prune/pruned.pth.tar --dataset cifar10 --arch vgg --depth 19 --epochs 160
结果

resnet

训练
  • 【命令】:
python main.py --refine ./results/CIFAR10_results/CIFAR10-Resnet-164/Prune/pruned.pth.tar --dataset cifar10 --arch resnet --depth 164 --epochs 160
结果

densenet

训练
  • 【命令】:
python main.py --refine ./results/CIFAR10_results/CIFAR10-Densenet-40/Prune/pruned.pth.tar --dataset cifar10 --arch densenet --depth 40 --epochs 160
结果


模型大小计算脚本 param_counter.py

  • 【路径】:./script/param_counter.py
import torchdef load_model(model_path):model = torch.load(model_path, map_location=torch.device('cpu'))return modeldef count_parameters(model_state_dict):total_params = sum(p.numel() for p in model_state_dict.values())return total_paramsdef get_model_parameters(model_path):# 加载模型状态字典model = load_model(model_path)# 模型状态字典存储在 'state_dict' 键下model_state_dict = model['state_dict'] if 'state_dict' in model else model# 计算参数总数total_params = count_parameters(model_state_dict)return total_params
  • main.py中:
from script.param_counter import get_model_parametersdef main():...# 计算 Parametersmodel_path = 'logs/model_best.pth.tar'total_params = get_model_parameters(model_path)print(f'Total parameters in the model: {total_params}')

结果汇总

注:与原项目结果略有差别.

CIFAR10

CIFAR10-VggBaselineSparsity(1e-4)Prune(70%)Fine-tune-160(70%)
Top1 Accuracy(%)93.7293.6033.9893.75
Parameters20.05M20.05M2.22M2.23M
CIFAR10-Resnet-164BaselineSparsity(1e-5)Prune(40%)Fine-tune-160(40%)
Top1 Accuracy(%)94.9995.0094.5995.27
Parameters1.74M1.74M1.46M1.49M
CIFAR10-Densenet-40BaselineSparsity(1e-5)Prune(40%)Fine-tune-160(40%)
Top1 Accuracy(%)94.1594.3794.1494.48
Parameters1.09M1.09M0.70M0.72M

相关文章:

网络剪枝——network-slimming 项目复现

目录 文章目录 目录网络剪枝——network-slimming 项目复现clone 存储库Baselinevgg训练结果 resnet训练结果 densenet训练结果 Sparsityvgg训练结果 resnet训练结果 densenet训练结果 Prunevgg命令结果 resnet命令结果 densenet命令结果 Fine-tunevgg训练结果 resnet训练结果 …...

Spring 懒加载的实际应用

引言 在 Spring 框架中,懒加载机制允许你在应用程序运行时延迟加载 Bean。这意味着 Bean 只会在第一次被请求时才实例化,而不是在应用程序启动时就立即创建。这种机制可以提高应用程序的启动速度,并节省内存资源。 Spring 的懒加载机制 懒…...

PyQT 串口改动每次点开时更新串口信息

class MainWindow(QWidget, Ui_Form):def __init__(self):super().__init__(parentNone)self.setupUi(self)self.comboBox.installEventFilter(self) # 加载事件过滤器self.comboBox.addItems(get_ports())def eventFilter(self, obj, event): # 定义事件过滤器if isinstance(o…...

三级_网络技术_19_路由器的配置及使用

1.在Cisco路由器上配置DHCP服务,使得客户端可以分配到的地址范围是222.28.71.2-222.28.71.200地址租用时间是2小时30分钟,不记录地址冲突日志默认路由是222.28.71.1,分配的dns服务器地址是222.28126.27和222.28.126.26。以下配置完全正确的是…...

【STM32 Blue Pill编程】-STM32CubeIDE开发环境搭建与点亮LED

开发环境搭建与点亮LED 文章目录 开发环境搭建与点亮LED1、STM32F103C8T6及STM32 Blue Pill 介绍2、下载并安装STM32CubeIDE3、编程并点亮LED3.1 在Stm32CubeIDE中编写第一个STM32程序3.1.1 创建项目3.1.2 设备配置3.1.2.1 系统时钟配置3.1.2.2 系统调试配置3.1.2.3 GPIO配置3.…...

【数据结构】六、图:4.图的遍历(深度优先算法DFS、广度优先算法BFS)

三、基本操作 文章目录 三、基本操作1.图的遍历1.1 深度优先遍历DFS1.1.1 DFS算法1.1.2 DFS算法的性能分析1.1.3 深度优先的生成树和生成森林 1.2 广度优先遍历BFS1.2.1 BFS算法1.2.2 BFS算法性能分析1.2.3 广度优先的生成树和生成森林 1.3 图的遍历与图的连通性 1.图的遍历 图…...

29、号外!号外!ERA5再分析数据下载方式更新啦

文章目录 1. 前言2. 账号注册与协议签署2.1 账号注册2.2 签署CDS-Beta使用条款2.3 更新.cdsapi文件 3. 常见问题与解决方法(持续更新中)3.1 问题1:更新完.cdsapi文件之后,原有下载代码不可以使用3.2 问题2: RuntimeError: 403 Cli…...

智能识别,2024年SD卡数据恢复软件的智能进化

除了手机之外现在有不少的设备还是依靠SD卡来存储数据,比如相机、摄像头、无人机等。有的时候会因为一些意外的情况导致数据丢失,那是真的丢失了吗?大部分情况还是可以依靠sd卡数据恢复工具来找回这些“消失”的数据哦。 1.福昕数据恢复 链…...

浙大数据结构慕课课后题(04-树5 Root of AVL Tree)

题目要求: AVL 树是一种自平衡的二叉搜索树。在 AVL 树中,任何节点的两个子子树的高度最多相差一;如果在任何时候它们相差不止一,则进行重新平衡以恢复此属性。图 1-4 说明了旋转规则。 图1 图2 图3 图4 现在给定一系列插入,您应该…...

Golang | Leetcode Golang题解之第331题验证二叉树的前序序列化

题目&#xff1a; 题解&#xff1a; func isValidSerialization(preorder string) bool {n : len(preorder)slots : 1for i : 0; i < n; {if slots 0 {return false}if preorder[i] , {i} else if preorder[i] # {slots--i} else {// 读一个数字for i < n &&…...

zdppy+vue3+onlyoffice文档管理系统项目实战 20240812上课笔记

遗留问题 1、增加新建和导入按钮&#xff0c;有按钮了&#xff0c;但是还没有完善&#xff0c;图标还不对&#xff0c;需要解决 2、登录功能 3、用户管理 4、角色管理 5、权限管理 6、分享功能 解决新建和导入的图标问题 解决代码&#xff1a; <a-button type"prim…...

怎么将mov视频转换成mp4?将mov视频转换成mp4的方法

怎么将mov视频转换成mp4&#xff1f;由于mov格式通常与苹果设备兼容性较好&#xff0c;而mp4则更广泛地支持于各种播放器和设备中&#xff0c;因此将mov转换为mp4可以确保视频在更多场景下能够流畅播放。通过这种转换&#xff0c;你可以确保视频在各种平台和设备上的兼容性&…...

大数据技术——实战项目:广告数仓(第五部分)

目录 第9章 广告数仓DIM层 9.1 广告信息维度表 9.2 平台信息维度表 9.3 数据装载脚本 第10章 广告数仓DWD层 10.1 广告事件事实表 10.1.1 建表语句 10.1.2 数据装载 10.1.2.1 初步解析日志 10.1.2.2 解析IP和UA 10.1.2.3 标注无效流量 10.2 数据装载脚本 第9章 广…...

计算机毕业设计 家电销售展示平台 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…...

C# 根据MySQL数据库中数据,批量删除OSS上的垃圾文件

protected void btndeleteTask_Click(object sender, EventArgs e){//获取标识为已删除数据&#xff0c;一次加载500条int countlocks _goodsItemsApplication.CountAllNeedExecuteTask();int totalPagelocks (countlocks 500 - 1) / 500;//分批次处理for (int curentpage …...

Vue3+Element-plus+setup使用vuemap/vue-amap实现高德地图API相关操作

首先要下载依赖并且引入 npm安装 // 安装核心库 npm install vuemap/vue-amap --save// 安装loca库 npm install vuemap/vue-amap-loca --save// 安装扩展库 npm install vuemap/vue-amap-extra --save cdn <script src"https://cdn.jsdelivr.net/npm/vuemap/vue-a…...

Windows配置开机直达桌面并跳过锁屏登录界面在 Windows 10 中添加在启动时自动运行的应用

目录 Win10开机直达桌面并跳过锁屏登录界面修改组策略修改注册表跳过登录界面 在 Windows 10 中添加在启动时自动运行的应用设置系统级别服务一、Windows下使用sc将应用程序设置为系统服务1. 什么是sc命令&#xff1f;2. sc命令的基本语法3. 创建Windows服务的步骤与示例创建服…...

pythonUI自动化007::pytest的组成以及运行

pytest组成&#xff1a; 测试模块&#xff1a;以“test”开头或结尾的py文件 测试用例&#xff1a;在测试模块里或测试类里&#xff0c;名称符合test_xxx函数或者示例函数。 测试类&#xff1a;测试模块里面命名符合Test_xxx的类 函数级&#xff1a; import pytestclass Test…...

开放式耳机哪个品牌好用又实惠?五大口碑精品分享

如今开放式耳机市场日益火爆&#xff0c;不少知名品牌都在对产品进行升级迭代&#xff0c;那么如何在一众品牌型号中选择到自己最满意的那一款呢&#xff1f;开放式耳机哪个品牌好用又实惠&#xff1f;这就需要更专业的选购攻略&#xff0c;因此笔者专门整理出了专业机构的开放…...

代码随想录算法训练营day39||动态规划07:多重背包+打家劫舍

多重背包理论 描述&#xff1a; 有N种物品和一个容量为V 的背包。 第i种物品最多有Mi件可用&#xff0c;每件耗费的空间是Ci &#xff0c;价值是Wi 。 求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量&#xff0c;且价值总和最大。 本质&#xff1a; …...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

云安全与网络安全:核心区别与协同作用解析

在数字化转型的浪潮中&#xff0c;云安全与网络安全作为信息安全的两大支柱&#xff0c;常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异&#xff0c;并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全&#xff1a;聚焦于保…...

CTF show 数学不及格

拿到题目先查一下壳&#xff0c;看一下信息 发现是一个ELF文件&#xff0c;64位的 ​ 用IDA Pro 64 打开这个文件 ​ 然后点击F5进行伪代码转换 可以看到有五个if判断&#xff0c;第一个argc ! 5这个判断并没有起太大作用&#xff0c;主要是下面四个if判断 ​ 根据题目…...

React父子组件通信:Props怎么用?如何从父组件向子组件传递数据?

系列回顾&#xff1a; 在上一篇《React核心概念&#xff1a;State是什么&#xff1f;》中&#xff0c;我们学习了如何使用useState让一个组件拥有自己的内部数据&#xff08;State&#xff09;&#xff0c;并通过一个计数器案例&#xff0c;实现了组件的自我更新。这很棒&#…...