当前位置: 首页 > news >正文

YOLOv8添加MobileViTv3模块(代码+free)

目录

一、理由

二、方法

(1)导入MobileViTv3模块

(2)在ultralytics/nn/tasks.py的函数parse_model中修改

(3)在yaml配置文件中写入

(4)开始训练,先把其他梯度关闭,保留新加的模块的梯度。

代码已在GitHub上传,链接:yolov8_vit


一、理由

        MobileViTv3是一种为移动设备优化的轻量级视觉Transformer架构,它结合了卷积神经网络(CNN)和视觉Transformer(ViT)的特点,以创建适合移动视觉任务的轻量级模型。

二、方法

(1)导入MobileViTv3模块

在ultralytics/nn创建vit文件夹,文件夹内放MobileViTv3以及需要的包。MobileViTv3模块如下:

import numpy as np
from torch import nn, Tensor
import math
import torch
from torch.nn import functional as F
from typing import Optional, Dict, Tuple, Union, Sequence
from mobilevit_v2_block import MobileViTBlockv2 as MbViTBkV2class MbViTV3(MbViTBkV2):def __init__(self,in_channels: int,attn_unit_dim: int,patch_h: Optional[int] = 2,patch_w: Optional[int] = 2,ffn_multiplier: Optional[Union[Sequence[Union[int, float]], int, float]] = 2.0,n_attn_blocks: Optional[int] = 2,attn_dropout: Optional[float] = 0.0,dropout: Optional[float] = 0.0,ffn_dropout: Optional[float] = 0.0,conv_ksize: Optional[int] = 3,attn_norm_layer: Optional[str] = "layer_norm_2d",enable_coreml_compatible_fn: Optional[bool] = False,) -> None:super(MbViTV3, self).__init__(in_channels, attn_unit_dim)self.enable_coreml_compatible_fn = enable_coreml_compatible_fnif self.enable_coreml_compatible_fn:# we set persistent to false so that these weights are not part of model's state_dictself.register_buffer(name="unfolding_weights",tensor=self._compute_unfolding_weights(),persistent=False,)cnn_out_dim = attn_unit_dimself.conv_proj = nn.Conv2d(2 * cnn_out_dim, in_channels, 1, 1)def forward_spatial(self, x: Tensor, *args, **kwargs) -> Tensor:x = self.resize_input_if_needed(x)fm_conv = self.local_rep(x)# convert feature map to patchesif self.enable_coreml_compatible_fn:patches, output_size = self.unfolding_coreml(fm_conv)else:patches, output_size = self.unfolding_pytorch(fm_conv)# learn global representations on all patchespatches = self.global_rep(patches)# [B x Patch x Patches x C] --> [B x C x Patches x Patch]if self.enable_coreml_compatible_fn:fm = self.folding_coreml(patches=patches, output_size=output_size)else:fm = self.folding_pytorch(patches=patches, output_size=output_size)# MobileViTv3: local+global instead of only globalfm = self.conv_proj(torch.cat((fm, fm_conv), dim=1))# MobileViTv3: skip connectionfm = fm + xreturn fmif __name__ == '__main__':from thop import profile  ## 导入thop模块model = MbViTV3(320, 160, enable_coreml_compatible_fn=False)input = torch.randn(1, 320, 44, 84)#flops, params = profile(model, inputs=(input,))outpus = model.forward_spatial(input)print('flops')  ## 打印计算量# print('params', params)  ## 打印参数量

(2)在ultralytics/nn/tasks.py的函数parse_model中修改

def parse_model(d, ch, verbose=True):  # model_dict, input_channels(3)# Parse a YOLO model.yaml dictionaryif verbose:LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<45}{'arguments':<30}")nc, gd, gw, act = d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')if act:Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()if verbose:LOGGER.info(f"{colorstr('activation:')} {act}")  # printlayers, save, c2 = [], [], ch[-1]  # layers, savelist, ch outfor i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args.......elif m in {MbViTV3}:c2 = args[0].......

(3)在yaml配置文件中写入

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 2  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2        320*320*64- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4       160*160*128- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8       80*80*256- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16      40*40*512- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32     20*20*1024- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9              20*20*1024# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 10- [[-1, 6], 1, Concat, [1]]                  # 11- [-1, 3, C2f, [512]]                        # 12                 40*40*512- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 13- [[-1, 4], 1, Concat, [1]]                  # 14- [-1, 3, C2f, [256]]                        # 15 (P3/8-small)    44*84*320- [-1, 1, MbViTV3, [320, 160]]               # 16- [-1, 1, Conv, [256, 3, 2]]                 # 17- [[-1, 12], 1, Concat, [1]]                 # 18- [-1, 3, C2f, [512]]                        # 19 (P4/16-medium)  40*40*512- [-1, 1, Conv, [512, 3, 2]]                # 20- [[-1, 9], 1, Concat, [1]]                 # 21- [-1, 3, C2f, [1024]]                      # 22 (P5/32-large)  20*20*1024- [[16, 19, 22], 1, Detect, [nc]]           # 23

(4)开始训练,先把其他梯度关闭,保留新加的模块的梯度。

import os
from ultralytics import YOLO
import subprocess
from ultralytics.nn.vit.Vit import MbViTV3
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'def add_vit(model):for name, param in model.model.named_parameters():stand = name[6:8]vit_ls = ['16']if stand in vit_ls:param.requires_grad = Trueelse:param.requires_grad = Falsefor name, param in model.model.named_parameters():if param.requires_grad:print(name)return modeldef main():# model = YOLO(r'ultralytics/cfg/models/v8/yolov8x.yaml').load('/root/autodl-tmp/yolov8x.pt')model = YOLO(r'yolov8x_vit.yaml').load('runs/detect/vit/weights/vit.pt')model = add_vit(model)model.train(data="data.yaml", imgsz=640, epochs=50, batch=10, device=0, workers=0)
if __name__ == '__main__':main()

————————————over————————————

相关文章:

YOLOv8添加MobileViTv3模块(代码+free)

目录 一、理由 二、方法 &#xff08;1&#xff09;导入MobileViTv3模块 &#xff08;2&#xff09;在ultralytics/nn/tasks.py的函数parse_model中修改 &#xff08;3&#xff09;在yaml配置文件中写入 &#xff08;4&#xff09;开始训练&#xff0c;先把其他梯度关闭&…...

从概念到落地:全面解析DApp项目开发的核心要素与未来趋势

随着区块链技术的迅猛发展&#xff0c;去中心化应用程序&#xff08;DApp&#xff09;逐渐成为Web3时代的重要组成部分。DApp通过智能合约和分布式账本技术&#xff0c;提供了无需信任中介的解决方案&#xff0c;这种去中心化的特性使其在金融、游戏、社交等多个领域得到了广泛…...

仓颉编程入门 -- 泛型概述 , 如何定义泛型函数

泛型概述 , 如何定义泛型函数 1 . 泛型的定义 在仓颉编程语言中&#xff0c;泛型机制允许我们定义参数化类型&#xff0c;这些类型在声明时不具体指定其操作的数据类型&#xff0c;而是作为类型形参保留&#xff0c;待使用时通过类型实参来明确。这种灵活性在函数和类型声明中…...

SOC估算方法之(OCV-SOC+安时积分法)

一、引言 此方法主要参考电动汽车用磷酸铁锂电池SOC估算方法这篇论文 总结&#xff1a; 开路电压的测量需要将电池静止相当长的一段时间才能达到平衡状态进行测量。 安时积分法存在初始SOC的估算和累积的误差。 所以上述两种方法都存在一定的缺陷&#xff0c;因此下面主要讲…...

指针(下)

文章目录 指针(下)野指针、空指针野指针空指针 二级指针**main**函数的原型说明 常量指针与指针常量常量指针指针常量常量指针常量 动态内存分配常用函数**malloc****calloc****realloc****free** **void**与**void***的区别扩展&#xff1a;形式参数和实际参数的对应关系 指针…...

C# 浅谈IEnumerable

一、IEnumerable 简介 IEnumerable 是一个接口&#xff0c;它定义了对集合进行迭代所需的方法。IEnumerable 接口主要用于允许开发者使用foreach循环来遍历集合中的元素。这个接口定义了一个名为 GetEnumerator 的方法&#xff0c;该方法返回一个实现了 IEnumerator 接口的对象…...

mmdebstrap:创建 Debian 系统 chroot 环境的利器 ️

文章目录 mmdebstrap 的一般性参数说明 &#x1f4dc;mmdebstrap 的常见用法示例 &#x1f308;使用 mmdebstrap 的注意事项 ⚠️ &#x1f308;你好呀&#xff01;我是 山顶风景独好 &#x1f388;欢迎踏入我的博客世界&#xff0c;能与您在此邂逅&#xff0c;真是缘分使然&am…...

【Linux SQLite数据库】一、SQLite交叉编译与移植

SQLite 是一个用 C 语言编写的开源、轻量级、快速、独立且高可靠性的 SQL 数据库引擎&#xff0c;它提供了功能齐全的数据库解决方案。SQLite 几乎可以在所有的手机和计算机上运行&#xff0c;它被嵌入到无数人每天都在使用的众多应用程序中。此外&#xff0c;SQLite 还具有稳定…...

每天写两道(数组篇)移除元素、

27.移除元素 给你一个数组 nums 和一个值 val&#xff0c;你需要 原地 移除所有数值等于 val 的元素。元素的顺序可能发生改变。然后返回 nums 中与 val 不同的元素的数量。 假设 nums 中不等于 val 的元素数量为 k&#xff0c;要通过此题&#xff0c;您需要执行以下操作&#…...

Unity 使用 NewtonSoft Json插件报错

JsonReaderException: Unexpected character encountered while parsing value: . Path , line 0, position 0. 通过断点发现&#xff0c;头有一串ZWNBSP&#xff0c;这个是BOM格式的JSON。在文件下看不到。 解决方法&#xff1a;改编码格式&#xff0c;Remove BOM....

k8s 部署 Mysqld_exporter 以及添加告警规则

最近监控 mysql 数据库&#xff0c;用了 pmm-server、pmm-client 发现监控是真的不太好用&#xff0c;还是用回 prometheus 吧。 部署mysqld_exporter k8s 部署最新版本的 mysqld_exporter&#xff0c;支持的数据库版本 MySQL >5.6、MariaDB > 10.3。 先在数据库创建用…...

基于STM32开发的智能农业环境监测系统

目录 引言环境准备工作 硬件准备软件安装与配置系统设计 系统架构硬件连接代码实现 初始化代码控制代码应用场景 农田环境监测温室环境控制常见问题及解决方案 常见问题解决方案结论 1. 引言 智能农业环境监测系统通过集成多种环境传感器&#xff0c;实时监测土壤湿度、温度…...

【SQL】平均售价

目录 题目 分析 代码 题目 表&#xff1a;Prices ------------------------ | Column Name | Type | ------------------------ | product_id | int | | start_date | date | | end_date | date | | price | int | ---------------…...

存储器与CPU的连接

1.单块存储芯片与CPU的连接 单独的一块独立的存储芯片提供的线有&#xff1a;地址总线&#xff0c;数据总线&#xff0c;读写控制线&#xff0c;片选线&#xff0c;如果该存储器只有八根数据总线用于输出数据&#xff0c;而cpu一次可以读64位的数据呢&#xff1f; 我们可以将八…...

unity--webgl 访问本地index.html

目录 1:使用本地服务器 1.1 使用 Python 的 SimpleHTTPServer 1.2 使用 Node.js 的 http-server 2&#xff1a;让其他人通过 IP 地址来访问你的 Unity WebGL 项目 2.1: 确保服务器可访问 2.2 获取公共 IP 地址 2.3 配置本地服务器 1.使用 Python 的 SimpleHTTPServer 2…...

慢慢欣赏DPDK RTE_MAX_ETHPORTS的定义

DPDK代码里面&#xff0c;RTE_MAX_ETHPORTS是一个常见的宏定义&#xff0c;但是在.c和.h文件找不到其定义&#xff0c;在全文件搜索条件下&#xff0c;在config/meson.build找到这么一个定义 dpdk_conf.set(RTE_MAX_ETHPORTS, get_option(max_ethports)) 该宏定义是根据构建输…...

Java Nacos与Gateway的使用

Java系列文章目录 IDEA使用指南 Java泛型总结&#xff08;快速上手详解&#xff09; Java Lambda表达式总结&#xff08;快速上手详解&#xff09; Java Optional容器总结&#xff08;快速上手图解&#xff09; Java 自定义注解笔记总结&#xff08;油管&#xff09; Jav…...

前端项目中的Server-sent Events(SSE)项目实践及其与websocket的区别

前端项目中的Server-sent Events(SSE)项目实践 前言 在前端开发中&#xff0c;实时数据更新是提升用户体验的重要因素之一。Server-SentEvents(SSE)是一种高效的技术&#xff0c;允许服务器通过单向连接将实时数据推送到客户端。下面将从SSE的基本改变&#xff0c;使用场景展…...

《老俞闲话|唯爱和热情不可辜负》读后感

《老俞闲话&#xff5c;唯爱和热情不可辜负》读后感 俞敏洪先生的这篇讲话充满了深情与智慧&#xff0c;他以自己丰富的人生经历和教育实践&#xff0c;向我们展现了一位教育家对于教育事业的热爱和对教师角色的深刻理解。 情感真挚&#xff0c;触动人心 俞敏洪先生的讲话中流…...

C语言 ——— 在杨氏矩阵中查找具体的某个数

目录 何为杨氏矩阵 题目要求 代码实现 何为杨氏矩阵 可以把杨氏矩阵理解为一个二维数组&#xff0c;这个二维数组中的每一行从左到右是递增的&#xff0c;每一列从上到下是递增的 题目要求 在杨氏矩阵中查找具体的某个数 要求&#xff1a;时间复杂度小于O(N) 代码实现…...

DAI-Net: 基于对偶自适应交互网络的药物推荐算法

引言 DAI-Net: Dual Adaptive Interaction Network for Coordinated Medication Recommendation 论文链接&#xff1a;https://ieeexplore.ieee.org/document/10614809 代码链接&#xff1a;GitHub - obananas/DAI-Net 在现代医疗保健中&#xff0c;如何利用电子健康记录&a…...

haproxy高级功能及配置

章节 一、haproxy 基础用法 二、haproxy 高级用法 三、haproxy之ACL的使用 目录 1 基于cookie的会话保持 1.1 cookie命名&#xff0c;并赋予其值 1.2 验证cookie信息 1.2.1 Windows浏览器验证 1.2.2 Linux下虚拟机验证 2 IP透传 2.1 四层与七层透传的区别 2.2 七层IP透传 2.2…...

【前端】NodeJS:记账本案例优化(MongoDB数据库)

文章目录 1 字符串转为时间对象——Moment2 记账本实例优化 1 字符串转为时间对象——Moment Moment.js中文网&#xff1a;https://momentjs.cn/docs/#/parsing/。 npm install moment // 安装moment var moment require(moment); // require moment().format(); 2 记账本实…...

Padding Mask;Sequence Mask;为什么如果没有适当的掩码机制,解码器在生成某个位置的输出时,可能会“看到”并错误地利用该位置之后的信息

目录 掩码Mask Padding Mask Sequence Mask 为什么需要Sequence Mask? Sequence Mask是如何工作的? 具体实现 为什么如果没有适当的掩码机制,解码器在生成某个位置的输出时,可能会“看到”并错误地利用该位置之后的信息 自回归性质 一、定义 二、性质 三、应用限制…...

派森学长带你学python—字典

一.字典的创建与删除 字典类型是根据一个信息查找另一个信息的方式构成了键值对 字典和列表均为可变数据类型&#xff0c;可变数据类型具有增删改等操作 字典中的键唯一&#xff0c;值可以有多个相同的&#xff1b;字典中的键要求是不可变序列&#xff0c;如字符串、整数、浮…...

如何设置 Visual Studio Code 的滚轮缩放功能

Visual Studio Code (VSCode) 是一个强大的代码编辑器&#xff0c;提供了许多便捷的功能来提高开发效率。其中之一就是通过滚轮缩放字体大小。以下是详细的设置步骤&#xff1a; 步骤 1&#xff1a;打开设置页面 首先&#xff0c;启动 Visual Studio Code。在左上角点击 “文…...

Python模拟退火算法

目录 模拟退火算法简介模拟退火算法的步骤模拟退火算法的Python实现场景&#xff1a;函数优化问题 代码解释总结 模拟退火算法简介 模拟退火算法&#xff08;Simulated Annealing, SA&#xff09;是一种基于物理退火过程的随机搜索算法&#xff0c;用于寻找全局最优解。其灵感…...

C语言典型例题36

《C程序设计教程&#xff08;第四版&#xff09;——谭浩强》 例题3.4 输入一个字符&#xff0c;判别它是否为大写字母&#xff0c;如果是&#xff0c;将它转换为小写字母&#xff1a;如果不是&#xff0c;不转换。然后输出最后要输出的字符。 代码&#xff1a; //《C程序设计…...

实现高亮的全文分页检索

文章目录 &#x1f31e; Sun Frame&#xff1a;SpringBoot 的轻量级开发框架&#xff08;个人开源项目推荐&#xff09;&#x1f31f; 亮点功能&#x1f4e6; spring cloud模块概览常用工具 &#x1f517; 更多信息1.sun-club-infra 模块SubjectEsServiceImpl.java1.querySubje…...

【buildroot与yocto区别】

buildroot与yocto区别 Buildroot和Yocto的主要区别在于它们的使用目的、构建过程、以及输出的内容。 使用目的&#xff1a;Buildroot主要用于构建根文件系统&#xff0c;而Yocto项目则用于帮助开发人员为嵌入式产品创建定制的基于‌Linux的系统。Yocto项目不仅仅构建根文件系…...