详细介绍Pytorch中torchvision的相关使用
torchvision 是 PyTorch 的一个官方库,主要用于处理计算机视觉任务。提供了许多常用的数据集、模型架构、图像转换等功能,使得计算机视觉任务的开发变得更加高效和便捷。以下是对 torchvision 主要功能的详细介绍:
1. 数据集(Datasets)
torchvision 提供了许多常用的计算机视觉数据集,如 CIFAR-10、MNIST、ImageNet 等。这些数据集可以直接通过 torchvision.datasets 模块加载。
示例:加载 CIFAR-10 数据集
from torchvision import datasets
from torch.utils.data import DataLoader# 加载 CIFAR-10 数据集
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True)# 使用 DataLoader 加载数据
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
2. 图像转换(Transforms)
torchvision.transforms 模块提供了许多常用的图像转换操作,如裁剪、缩放、旋转、翻转等。这些转换操作可以单独使用,也可以组合使用。
示例:组合图像转换操作
from torchvision import transforms# 定义转换操作
transform = transforms.Compose([transforms.Resize((256, 256)),transforms.RandomCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])# 应用转换操作
train_dataset.transform = transform
test_dataset.transform = transform
3. 预训练模型(Models)
torchvision.models 模块提供了许多常用的预训练模型,如 ResNet、VGG、AlexNet、DenseNet 等。这些模型可以直接用于迁移学习或作为基准模型。
示例:加载预训练的 ResNet-50 模型
from torchvision import models
import torch.nn as nn# 加载预训练的 ResNet-50 模型
model = models.resnet50(pretrained=True)# 修改最后一层以适应新的分类任务
num_classes = 10
model.fc = nn.Linear(model.fc.in_features, num_classes)
4. 数据加载器(DataLoader)
torch.utils.data.DataLoader 是一个实用的数据加载器,可以与 torchvision 提供的数据集一起使用,方便地进行批量加载和数据迭代。
示例:使用 DataLoader 加载数据
from torch.utils.data import DataLoader# 使用 DataLoader 加载数据
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)# 训练模型
for images, labels in train_loader:# 训练代码pass
5. 自定义数据集(Custom Datasets)
如果需要使用自定义数据集,可以继承 torch.utils.data.Dataset 类,并实现 __len__ 和 __getitem__ 方法。
示例:自定义数据集
from torch.utils.data import Dataset
from PIL import Image
import osclass CustomDataset(Dataset):def __init__(self, root_dir, transform=None):self.root_dir = root_dirself.transform = transformself.images = os.listdir(root_dir)def __len__(self):return len(self.images)def __getitem__(self, idx):img_path = os.path.join(self.root_dir, self.images[idx])image = Image.open(img_path)if self.transform:image = self.transform(image)return image# 使用自定义数据集
custom_dataset = CustomDataset(root_dir='path/to/dataset', transform=transform)
custom_loader = DataLoader(custom_dataset, batch_size=64, shuffle=True)
6. 可视化(Visualization)
torchvision 还提供了一些用于可视化的工具,如 torchvision.utils.make_grid 可以将多个图像拼接成一个网格图像。
示例:可视化图像
import matplotlib.pyplot as plt
from torchvision import utils# 获取一批图像
images, labels = next(iter(train_loader))# 将图像拼接成网格
grid = utils.make_grid(images)# 显示图像
plt.imshow(grid.permute(1, 2, 0))
plt.show()
相关文章:
详细介绍Pytorch中torchvision的相关使用
torchvision 是 PyTorch 的一个官方库,主要用于处理计算机视觉任务。提供了许多常用的数据集、模型架构、图像转换等功能,使得计算机视觉任务的开发变得更加高效和便捷。以下是对 torchvision 主要功能的详细介绍: 1. 数据集(Dat…...
AI部署——主流模型推理部署框架
我们以最经典的Yolov5目标检测网络为例解释一下10种主流推理部署框架的大概内容,省略模型训练的过程,只讨论模型转换、环境配置、推理部署等步骤。 Intel的OpenVINO — CPUNvidia的TensorRT — GPU/CPUOpenCV DNN Module — GPU/CPUMicrosoft ONNX Runti…...
PyTorch之loading fbgemm.dll异常的解决办法
前言 PyTorch是一个深度学习框架,当我们在本地调试大模型时,可能会选用并安装它,目前已更新至2.4版本。 一、安装必备 1. window 学习或开发阶段,我们通常在window环境下进行,因此需满足以下条件: Windo…...
Vscode——如何实现 Ctrl+鼠标左键 跳转函数内部的方法
一、对于Python代码 安装python插件即可实现 二、对于C/C代码 安装C/C插件即可实现...
力扣热题100_回溯_78_子集
文章目录 题目链接解题思路解题代码 题目链接 78. 子集 给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。 示例 1: 输入ÿ…...
浏览器如何工作(一)进程架构
分享cosine 大佬,版权©️大佬所有 浏览器的核心功能 浏览器,“浏览” 是这个产品的核心,浏览无非分为两步: 获取想浏览的资源 展示得到的资源 现代浏览器还增加了交互功能,这涉及到脚本运行。因此,…...
【LeetCode】两数之和
给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案,并且你不能使用两次相同的元素。 你可以按任意顺序返回答案。 示例 1…...
UE5学习笔记11-为拿取武器添加动画
一、一点说明 动画实例通过扩展为所有机器上的每个字符都存在动画蓝图,动画实例只能访问该计算机上的变量。 二、思路 我在武器组件中有一个武器类的指针,判断当前指针是否为空去判断当前角色是否装备武器 三、实现 1.在角色C类中添加是否装备武器的函…...
68. 文本左右对齐【 力扣(LeetCode) 】
一、题目描述 给定一个单词数组 words 和一个长度 maxWidth ,重新排版单词,使其成为每行恰好有 maxWidth 个字符,且左右两端对齐的文本。 你应该使用 “贪心算法” 来放置给定的单词;也就是说,尽可能多地往每行中放置单…...
【中等】 猿人学web第一届 第6题 js混淆-回溯
文章目录 请求流程请求参数 加密参数定位r() 方法z() 方法 加密参数还原JJENCOde js代码加密环境检测_n("jsencrypt")12345 计算全部中奖的总金额请求代码注意 请求流程 请求参数 打开 调试工具,查看数据接口 https://match.yuanrenxue.cn/api/match/6 请…...
低、中、高频率段具体在不同应用中的范围是多少
1、低频率段(Low Frequency Range) ①建筑声学和噪声控制:通常将20 Hz 到 200 Hz 的频率范围视为低频段。在这一范围内,声音的波长较长,通常与低音(如重低音音乐)和建筑结构中的振动有关。 ②…...
Oxford Model600 Model400低温氦压缩机cryogenic helium compressor手侧
Oxford Model600 Model400低温氦压缩机cryogenic helium compressor手侧...
Golang面试题四(并发编程)
目录 1.Go常见的并发模型 2.哪些方法安全读写共享变量 3.如何排查数据竞争问题 4.Go有哪些同步原语 1. Mutex (互斥锁) 2. RWMutex (读写互斥锁) 3. Atomic 3.1.使用场景 3.2.整型操作 3.3.指针操作 3.4.使用示例 4. Channel 使用场景 使用示例 5. sync.WaitGr…...
计算机学生高效记录并整理编程学习笔记的方法
哪些知识点需要做笔记? 以下是我认为计算机学生大学四年可以积累的笔记。 ① 编程语言类(C语言CJava):保留课堂笔记中可运行的代码部分,课后debug跑一跑。学习语言初期应该多写代码(从仿写到自己写&#…...
【书生大模型实战】L2-LMDeploy 量化部署实践闯关任务
一、关卡任务 基础任务(完成此任务即完成闯关) 使用结合W4A16量化与kv cache量化的internlm2_5-7b-chat模型封装本地API并与大模型进行一次对话,作业截图需包括显存占用情况与大模型回复,参考4.1 API开发(优秀学员必做)使用Func…...
《编程学习笔记之道:构建知识宝库的秘诀》
在编程的浩瀚世界里,我们如同勇敢的探险家,不断追寻着知识的宝藏。而高效的笔记记录和整理方法,就像是我们手中的指南针,指引着我们在这片知识海洋中前行,不至于迷失方向。在这篇文章中,我们将深入探讨如何…...
DETR论文,基于transformer的目标检测网络 DETR:End-to-End Object Detection with Transformers
transformer的基本结构: encoder-decoder的基本流程为: 1)对于输入,首先进行embedding操作,即将输入映射为向量的形式,包含两部分操作,第一部分是input embedding:例如,在NLP领域&…...
untiy有渲染线程和逻辑线程嘛
之前我也这么认为,其实unity引擎是单线程的,当然后续的jobs不在考虑范围内 如果你在一个awake 或者 start方法中 延时,是会卡住主线程的 比如 其实游戏引擎有一个基础简单理解,那就是不断的进行一个循环,在这个周期循…...
什么是数据仓库ODS层?为什么需要ODS层?
在大数据时代,数据仓库的重要性不言而喻。它不仅是企业数据存储与管理的核心,更是数据分析与决策支持的重要基础。而在数据仓库的各个层次中,ODS层(Operational Data Store,操作型数据存储)作为关键一环&am…...
permutation sequence(
60. Permutation Sequence class Solution:def getPermutation(self, n: int, k: int) -> str:def rec(k, l, ans, n):if(n0): return# 保留第一个位置,剩下数字的组合leftCom math.factorial(n - 1) #用于计算 (n-1) 的阶乘值ele k // leftCommod k % leftCo…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...
群晖NAS如何在虚拟机创建飞牛NAS
套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...
