PyTorch之loading fbgemm.dll异常的解决办法
前言
PyTorch是一个深度学习框架,当我们在本地调试大模型时,可能会选用并安装它,目前已更新至2.4版本。
一、安装必备
1. window
学习或开发阶段,我们通常在window环境下进行,因此需满足以下条件:
Windows 7 and greater;
Windows 10 or greater recommended;
Windows Server 2008 r2 and greater;
2. python
准备一个python环境,需满足以下条件:
Python 3.8-3.11(
支持
);
Python 2.x(不支持
);
3. install pytorch
正式安装pytorch执行如下命令(默认最新版):
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
安装successful后,可看到如下界面(来自pycharm
):
二、异常情景
1. 请求GPT-2
博主拿GPT作为示例(来自官方),新建一个python文件并取名为hello_GPT2.py,目的是完成gpt2模型的调用,下面是源码 :
from transformers import GPT2LMHeadModel, GPT2Tokenizer# 指定模型名称
model_name = 'gpt2'# 加载模型和分词器
tokenizer = GPT2Tokenizer.from_pretrained(model_name)model = GPT2LMHeadModel.from_pretrained(model_name)# 输入文本
input_text = "Once upon a time"# 对输入文本进行分词
inputs = tokenizer.encode(input_text, return_tensors='pt')# 生成文本
outputs = model.generate(inputs,max_length=100, # 生成文本的最大长度num_return_sequences=1, # 生成序列的数量temperature=0.7, # 温度控制生成的多样性,值越高,生成的文本越随机top_k=50, # 控制生成的词汇范围,值越小,生成的文本越集中top_p=0.9 # 采样阈值,控制生成的文本多样性
)# 解码生成的文本
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)print("生成的文本:")
print(generated_text)
2. 异常Traceback
当我们执行上面的代码时,极容易遇到以下异常:
Traceback (most recent call last):File "D:\projects\PycharmProjects\llm_openai_gpt\hello_GPT2.py", line 1, in <module>from transformers import GPT2LMHeadModel, GPT2TokenizerFile "D:\projects\PycharmProjects\llm_openai_gpt\.venv\Lib\site-packages\transformers\__init__.py", line 26, in <module>from . import dependency_versions_checkFile "D:\projects\PycharmProjects\llm_openai_gpt\.venv\Lib\site-packages\transformers\dependency_versions_check.py", line 16, in <module>from .utils.versions import require_version, require_version_coreFile "D:\projects\PycharmProjects\llm_openai_gpt\.venv\Lib\site-packages\transformers\utils\__init__.py", line 34, in <module>from .generic import (File "D:\projects\PycharmProjects\llm_openai_gpt\.venv\Lib\site-packages\transformers\utils\generic.py", line 462, in <module>import torch.utils._pytree as _torch_pytreeFile "D:\projects\PycharmProjects\llm_openai_gpt\.venv\Lib\site-packages\torch\__init__.py", line 148, in <module>raise err
OSError: [WinError 126] 找不到指定的模块。 Error loading "D:\projects\PycharmProjects\llm_openai_gpt\.venv\Lib\site-packages\torch\lib\fbgemm.dll" or one of its dependencies.
关键之处:
OSError: [WinError 126] 找不到指定的模块。Error loading "D:\projects\PycharmProjects\llm_openai_gpt\.venv\Lib\site-packages\torch\lib\fbgemm.dll" or one of its dependencies
.
三、解决办法
根据提示,是因为fbgemm.dll
缺少依赖,导致加载异常,所以直接办法去找依赖文件,博主这里给出一个解决的办法:
1. 下载libomp140.x86_64.dll文件
点击 dllme.com
后,可看到如下页面:
点击右下角,下载 libomp140.x86_64_x86-64.zip。
2. 存放位置
将zip解压后,有一个文件:libomp140.x86_64.dll
,转移至 Windows\System32 目录下,如存在可覆盖。
完成后,可顺利排除该异常。
结语
该文用于解决PyTorch2.4安装后,出现了 OSError: [WinError 126] 找不到指定的模块,Error loading "PATH\torch\lib\fbgemm.dll" or one of its dependencies.
的问题,如存在其他异常,还需进一步探索,如有疑问,欢迎指正!
相关文章:

PyTorch之loading fbgemm.dll异常的解决办法
前言 PyTorch是一个深度学习框架,当我们在本地调试大模型时,可能会选用并安装它,目前已更新至2.4版本。 一、安装必备 1. window 学习或开发阶段,我们通常在window环境下进行,因此需满足以下条件: Windo…...

Vscode——如何实现 Ctrl+鼠标左键 跳转函数内部的方法
一、对于Python代码 安装python插件即可实现 二、对于C/C代码 安装C/C插件即可实现...
力扣热题100_回溯_78_子集
文章目录 题目链接解题思路解题代码 题目链接 78. 子集 给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。 示例 1: 输入ÿ…...
浏览器如何工作(一)进程架构
分享cosine 大佬,版权©️大佬所有 浏览器的核心功能 浏览器,“浏览” 是这个产品的核心,浏览无非分为两步: 获取想浏览的资源 展示得到的资源 现代浏览器还增加了交互功能,这涉及到脚本运行。因此,…...
【LeetCode】两数之和
给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案,并且你不能使用两次相同的元素。 你可以按任意顺序返回答案。 示例 1…...

UE5学习笔记11-为拿取武器添加动画
一、一点说明 动画实例通过扩展为所有机器上的每个字符都存在动画蓝图,动画实例只能访问该计算机上的变量。 二、思路 我在武器组件中有一个武器类的指针,判断当前指针是否为空去判断当前角色是否装备武器 三、实现 1.在角色C类中添加是否装备武器的函…...
68. 文本左右对齐【 力扣(LeetCode) 】
一、题目描述 给定一个单词数组 words 和一个长度 maxWidth ,重新排版单词,使其成为每行恰好有 maxWidth 个字符,且左右两端对齐的文本。 你应该使用 “贪心算法” 来放置给定的单词;也就是说,尽可能多地往每行中放置单…...

【中等】 猿人学web第一届 第6题 js混淆-回溯
文章目录 请求流程请求参数 加密参数定位r() 方法z() 方法 加密参数还原JJENCOde js代码加密环境检测_n("jsencrypt")12345 计算全部中奖的总金额请求代码注意 请求流程 请求参数 打开 调试工具,查看数据接口 https://match.yuanrenxue.cn/api/match/6 请…...
低、中、高频率段具体在不同应用中的范围是多少
1、低频率段(Low Frequency Range) ①建筑声学和噪声控制:通常将20 Hz 到 200 Hz 的频率范围视为低频段。在这一范围内,声音的波长较长,通常与低音(如重低音音乐)和建筑结构中的振动有关。 ②…...

Oxford Model600 Model400低温氦压缩机cryogenic helium compressor手侧
Oxford Model600 Model400低温氦压缩机cryogenic helium compressor手侧...

Golang面试题四(并发编程)
目录 1.Go常见的并发模型 2.哪些方法安全读写共享变量 3.如何排查数据竞争问题 4.Go有哪些同步原语 1. Mutex (互斥锁) 2. RWMutex (读写互斥锁) 3. Atomic 3.1.使用场景 3.2.整型操作 3.3.指针操作 3.4.使用示例 4. Channel 使用场景 使用示例 5. sync.WaitGr…...

计算机学生高效记录并整理编程学习笔记的方法
哪些知识点需要做笔记? 以下是我认为计算机学生大学四年可以积累的笔记。 ① 编程语言类(C语言CJava):保留课堂笔记中可运行的代码部分,课后debug跑一跑。学习语言初期应该多写代码(从仿写到自己写&#…...

【书生大模型实战】L2-LMDeploy 量化部署实践闯关任务
一、关卡任务 基础任务(完成此任务即完成闯关) 使用结合W4A16量化与kv cache量化的internlm2_5-7b-chat模型封装本地API并与大模型进行一次对话,作业截图需包括显存占用情况与大模型回复,参考4.1 API开发(优秀学员必做)使用Func…...
《编程学习笔记之道:构建知识宝库的秘诀》
在编程的浩瀚世界里,我们如同勇敢的探险家,不断追寻着知识的宝藏。而高效的笔记记录和整理方法,就像是我们手中的指南针,指引着我们在这片知识海洋中前行,不至于迷失方向。在这篇文章中,我们将深入探讨如何…...

DETR论文,基于transformer的目标检测网络 DETR:End-to-End Object Detection with Transformers
transformer的基本结构: encoder-decoder的基本流程为: 1)对于输入,首先进行embedding操作,即将输入映射为向量的形式,包含两部分操作,第一部分是input embedding:例如,在NLP领域&…...

untiy有渲染线程和逻辑线程嘛
之前我也这么认为,其实unity引擎是单线程的,当然后续的jobs不在考虑范围内 如果你在一个awake 或者 start方法中 延时,是会卡住主线程的 比如 其实游戏引擎有一个基础简单理解,那就是不断的进行一个循环,在这个周期循…...

什么是数据仓库ODS层?为什么需要ODS层?
在大数据时代,数据仓库的重要性不言而喻。它不仅是企业数据存储与管理的核心,更是数据分析与决策支持的重要基础。而在数据仓库的各个层次中,ODS层(Operational Data Store,操作型数据存储)作为关键一环&am…...

permutation sequence(
60. Permutation Sequence class Solution:def getPermutation(self, n: int, k: int) -> str:def rec(k, l, ans, n):if(n0): return# 保留第一个位置,剩下数字的组合leftCom math.factorial(n - 1) #用于计算 (n-1) 的阶乘值ele k // leftCommod k % leftCo…...

PCL 三线性插值
文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 三线性插值是一种在三维空间中使用已知数据点进行插值的方法。它是在立方体内的插值方法,通过利用立方体的八个顶点的已知值来估算立方体内任意一点的值。三线性插值扩展了一维的线性插值和二维的双线性插值。其基…...

JVM虚拟机(一)介绍、JVM内存模型、JAVA内存模型,堆区、虚拟机栈、本地方法栈、方法区、常量池
目录 学习JVM有什么用、为什么要学JVM? JVM是什么呢? 优点一:一次编写,到处运行。(Write Once, Run Anywhere,WORA) 优点二:自动内存管理,垃圾回收机制。 优点三&am…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...

C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...

深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...

在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...

短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...