GPT-SoVITS
文章目录
- model arch
- S1 Model
- S2 model
model arch

- S1 model: AR model–ssl tokens
- S2 model: VITS,ssl 已经是mel 长度线性相关,MRTE(ssl_codes_embs, text, global_mel_emb)模块,将文本加强相关,学到一个参考结果
S1 Model
class Text2SemanticDecoder()def forward_old(self, x, x_lens, y, y_lens, bert_feature):"""x: phoneme_idsy: semantic_idsbert_feature: 已经根据word2phn 扩展成和x等长train : y+EOS,已知长度;infer : AR 预测,预测EOS 终止;如果没有,到预设最大长度,终止;"""# phn torch.Size([20, 99]) bert_feature torch.Size([20, 1024, 99])x = self.ar_text_embedding(x)x = x + self.bert_proj(bert_feature.transpose(1, 2))x = self.ar_text_position(x)x_mask = make_pad_mask(x_lens)y_mask = make_pad_mask(y_lens)y_mask_int = y_mask.type(torch.int64)codes = y.type(torch.int64) * (1 - y_mask_int)# Training# AR Decoder: SinePositionalEmbeddingy, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)x_len = x_lens.max()y_len = y_lens.max()y_emb = self.ar_audio_embedding(y)y_pos = self.ar_audio_position(y_emb)xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)ar_xy_padding_mask = xy_padding_maskx_attn_mask = F.pad(torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),(0, y_len),value=True,)y_attn_mask = F.pad(torch.triu(torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),diagonal=1,),(x_len, 0),value=False,)xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)bsz, src_len = x.shape[0], x_len + y_len_xy_padding_mask = (ar_xy_padding_mask.view(bsz, 1, 1, src_len).expand(-1, self.num_head, -1, -1).reshape(bsz * self.num_head, 1, src_len))xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))xy_attn_mask = new_attn_mask# x 和完整的 y 一次性输入模型xy_pos = torch.concat([x, y_pos], dim=1)xy_dec, _ = self.h((xy_pos, None),mask=xy_attn_mask,)logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)# loss# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sumloss = F.cross_entropy(logits, targets, reduction="sum")acc = self.ar_accuracy_metric(logits.detach(), targets).item()return loss, acc
S2 model
class Encoder()def forward(self, ssl, y_lengths, text, text_lengths, speed=1,test=None):'''y_lengths: mel_lengthge : ref_encoder_outputs'''ge = self.ref_enc(y * y_mask, y_mask)ssl = self.ssl_proj(ssl)quantized, codes, commit_loss, quantized_list = self.quantizer(ssl, layers=[0])if self.semantic_frame_rate == "25hz":quantized = F.interpolate(quantized, size=int(quantized.shape[-1] * 2), mode="nearest")y = self.encoder_ssl(y * y_mask, y_mask)text_mask = torch.unsqueeze(commons.sequence_mask(text_lengths, text.size(1)), 1).to(y.dtype)if test == 1:text[:, :] = 0text = self.text_embedding(text).transpose(1, 2)text = self.encoder_text(text * text_mask, text_mask)y = self.mrte(y, y_mask, text, text_mask, ge)# self.encoder_ssl, self.encoder_text, self.encoder2 结构一样y = self.encoder2(y * y_mask, y_mask)if(speed!=1):y = F.interpolate(y, size=int(y.shape[-1] / speed)+1, mode="linear")y_mask = F.interpolate(y_mask, size=y.shape[-1], mode="nearest")stats = self.proj(y) * y_maskm, logs = torch.split(stats, self.out_channels, dim=1)return y, m, logs, y_mask
相关文章:
GPT-SoVITS
文章目录 model archS1 ModelS2 model model arch S1 model: AR model–ssl tokensS2 model: VITS,ssl 已经是mel 长度线性相关,MRTE(ssl_codes_embs, text, global_mel_emb)模块,将文本加强相关,学到一个参考结果 S1 Model cla…...
linux高级编程——文件IO(常用函数大全)
1.相关介绍及常用函数 Linux高级编程中的目录IO操作是文件系统编程的一个重要组成部分,主要涉及到目录的打开、读取、遍历和关闭等操作。以下是一些基本的目录IO操作和相关的系统调用函数 1.1 opendir函数 打开目录:使用opendir函数打开一个目录&#…...
matplotlib画图
Matplotlib 先写一个最简单的: import matplotlib.pyplot as plt plt.plot([1,4],[2,8]) #plot画折线图plt.show() 确定两个点画一条线 import matplotlib.pyplot as plt x[1,23,4,56,7,6] #x轴数据 y[22,44,56,67,43,2] #y轴数据 s[22,43,33,44,43,7] plt.p…...
Jetpack 各种框架简介
Jetpack是Google推出的一套为Android开发提供极大便利的组件、工具和指导集,旨在帮助开发者快速构建高质量的应用,并遵循最佳实践。 Jetpack不仅是一个提高开发效率的工具集,还是Android开发的未来方向。它通过整合各种组件和工具࿰…...
海康VisionMaster使用学习笔记5-开机自启动
开机自启动 在实际应用中,用户会希望机台上电开机后,软件能自启动避免现场人员误操作,减少机台重新上电时的操作步骤以提升效率。 设置 打开VM,点击设置,软件设置->开机自启动->勾选开机自启动->确定 默认运行界面 启动时以设定的…...
驾驭数据之序:SQL序列的奥秘与实现
标题:驾驭数据之序:SQL序列的奥秘与实现 摘要 在数据库管理中,保证数据的有序性和唯一性是至关重要的。SQL序列(Sequence)作为一种强大的数据库对象,为我们提供了一种在不同数据库系统中生成连续数字的手…...
【LeetCode】148. 排序链表
排序链表 题目描述: 给你链表的头结点 head ,请将其按 升序 排列并返回 排序后的链表 。 示例 1: 输入:head [4,2,1,3] 输出:[1,2,3,4]示例 2: 输入:head [-1,5,3,4,0] 输出:…...
阿里云-java调用短信服务,第三方接口的开启(傻瓜式教程)
第一步:在浏览器中,搜索阿里云 第二步:打开aly的主页 第三步:在最上方的导航栏中,找到云市场,注意不要点击,会自动有触发悬浮框出现,在悬浮框中找到 短信 第四步:点击 短…...
以node / link文件表征的道路网络-----基于南京公路公开数据做路径规划(下)------dijkstra算法的一些简单花样
在不改变dijkstra算法本身的情况下,完全可以从数据源的角度出发,解决我们的一些简单需求: 比较初级且粗暴的玩法,可以是强行赋予一些link极端的路段长度。 对于我们坚决不希望车辆行驶的道路、禁行区、或是危险区,就…...
计算机操作员中级理论知识试题
计算机操作员中级理论知识试题 一、单项选择题 在ASCII编码中,无法显示或打印的字符是()。 A.字符$,%,# B.运算符号*,.,/ C.空格 D.ASCII编码值在0-30间的控制符号将十进制数31.625转换成十六进制数是() A.115.10 B.If.a C.37.5 D.If.10在计算机中,同统一指挥和控制计…...
Redis主从同步配置
1: 安装Redis 参考 linux ubuntu安装redis_ubuntu离线安装redis7.2.5-CSDN博客 2:创建目录 到达redis 根目录 cd /usr/redis/# 创建主从工作目录 mkdir -p replication/6379 # master 节点 mkdir -p replication/6378 # 从节点 mkdir -p replication/6377 # 从节点…...
输出重定向
输出重定向是指将程序的输出(标准输出、错误输出等)重定向到指定的位置,而不是默认的输出设备(通常是终端/控制台)。在 Unix/Linux 系统中,输出重定向通过使用符号 >、>>、2> 等来实现。 常见…...
ubuntu20.04挂载机械硬盘
环境说明 1.基于清华源地址下载的ubuntu20.04制作的系统盘,然后安装在PC上(固态硬盘) 2.机械硬盘无法看见 目的 挂载机械硬盘,开机就能自动启动/挂载 参考链接 https://blog.csdn.net/qq_35624642/article/details/137713143…...
Python轻量级 NoSQL 数据库之tinydb使用详解
概要 在现代应用开发中,使用数据库来存储和管理数据是非常常见的需求。对于简单的数据存储需求,关系型数据库可能显得过于复杂。TinyDB 是一个纯 Python 实现的轻量级 NoSQL 数据库,专为嵌入式场景设计,适用于小型项目、原型开发和教学等场景。本文将详细介绍 TinyDB 库,…...
【数据结构】二叉树(二)遍历
上篇已经了解对二叉树有了大概了解,本篇学习二叉树的前序、中序、后序及层序遍历的递归与非递归共7种遍历方法,快收藏吧~ 目录 1、前序遍历 递归方式: 迭代方式: 2、中序遍历 递归方式: 迭代方式: …...
NGINX 常用内置变量
目录 $remote_addr 变量 $args 变量 $is_args 变量 $document_root 变量 $document_uri 变量 $host 变量 $limit_rate 变量 $remote_port 变量 $remote_port --显示客户端端口 $request_method 变量 --返回请求方式 $request_filename 变量 --返回请求实际路径 $request_uri…...
Windows采用VS2019实现Open3D的C++应用
1、参考链接 https://blog.csdn.net/qq_31254435/article/details/137799739 但是,我的方法和上述链接不大一样,我是采用VS2019进行编译的,方便在Windows平台上验证各种算法。 2、创建一个VS2019的C Console工程 #include <iostream>…...
冒泡排序、选择排序、插入排序,三种简单排序算法的区别?
1、冒泡排序 冒泡排序是从下标 1 遍历到 n,每当遇到大于下一个的,就和上一个交换位置,这样最大的就移动到了 n 的位置,然后从头再从 1 遍历到 n-1,把第二大的移动到 n-1 的位置,依此类推,每次从…...
Docker 日志管理
一、ELK -Filebeat Elasticsearch 数据的存储和检索 常用端口: 9100:elasticsearch-head提供web访问 9200:elasticsearch与其他程序连接或发送消息 9300:elasticsearch集群状态 Logstash 有三个组件构成input,fi…...
JavaScript初级——基础知识
一、JS的HelloWord 1、JS的代码需要编写到script标签中 2、JS的执行是根据语句从上到下一次执行的。 二、JS的编写位置 1、可以将js代码编写到标签的onclick属性中,当我们点击按钮时,js代码才会执行。 2、可以将js代码写在超链接的href属性中࿰…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
Python竞赛环境搭建全攻略
Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型(算法、数据分析、机器学习等)不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...
【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统
Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...
CppCon 2015 学习:Time Programming Fundamentals
Civil Time 公历时间 特点: 共 6 个字段: Year(年)Month(月)Day(日)Hour(小时)Minute(分钟)Second(秒) 表示…...
用鸿蒙HarmonyOS5实现国际象棋小游戏的过程
下面是一个基于鸿蒙OS (HarmonyOS) 的国际象棋小游戏的完整实现代码,使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├── …...
第22节 Node.js JXcore 打包
Node.js是一个开放源代码、跨平台的、用于服务器端和网络应用的运行环境。 JXcore是一个支持多线程的 Node.js 发行版本,基本不需要对你现有的代码做任何改动就可以直接线程安全地以多线程运行。 本文主要介绍JXcore的打包功能。 JXcore 安装 下载JXcore安装包&a…...
