GPT-SoVITS
文章目录
- model arch
- S1 Model
- S2 model
model arch
- S1 model: AR model–ssl tokens
- S2 model: VITS,ssl 已经是mel 长度线性相关,MRTE(ssl_codes_embs, text, global_mel_emb)模块,将文本加强相关,学到一个参考结果
S1 Model
class Text2SemanticDecoder()def forward_old(self, x, x_lens, y, y_lens, bert_feature):"""x: phoneme_idsy: semantic_idsbert_feature: 已经根据word2phn 扩展成和x等长train : y+EOS,已知长度;infer : AR 预测,预测EOS 终止;如果没有,到预设最大长度,终止;"""# phn torch.Size([20, 99]) bert_feature torch.Size([20, 1024, 99])x = self.ar_text_embedding(x)x = x + self.bert_proj(bert_feature.transpose(1, 2))x = self.ar_text_position(x)x_mask = make_pad_mask(x_lens)y_mask = make_pad_mask(y_lens)y_mask_int = y_mask.type(torch.int64)codes = y.type(torch.int64) * (1 - y_mask_int)# Training# AR Decoder: SinePositionalEmbeddingy, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)x_len = x_lens.max()y_len = y_lens.max()y_emb = self.ar_audio_embedding(y)y_pos = self.ar_audio_position(y_emb)xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)ar_xy_padding_mask = xy_padding_maskx_attn_mask = F.pad(torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),(0, y_len),value=True,)y_attn_mask = F.pad(torch.triu(torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),diagonal=1,),(x_len, 0),value=False,)xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)bsz, src_len = x.shape[0], x_len + y_len_xy_padding_mask = (ar_xy_padding_mask.view(bsz, 1, 1, src_len).expand(-1, self.num_head, -1, -1).reshape(bsz * self.num_head, 1, src_len))xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))xy_attn_mask = new_attn_mask# x 和完整的 y 一次性输入模型xy_pos = torch.concat([x, y_pos], dim=1)xy_dec, _ = self.h((xy_pos, None),mask=xy_attn_mask,)logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)# loss# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sumloss = F.cross_entropy(logits, targets, reduction="sum")acc = self.ar_accuracy_metric(logits.detach(), targets).item()return loss, acc
S2 model
class Encoder()def forward(self, ssl, y_lengths, text, text_lengths, speed=1,test=None):'''y_lengths: mel_lengthge : ref_encoder_outputs'''ge = self.ref_enc(y * y_mask, y_mask)ssl = self.ssl_proj(ssl)quantized, codes, commit_loss, quantized_list = self.quantizer(ssl, layers=[0])if self.semantic_frame_rate == "25hz":quantized = F.interpolate(quantized, size=int(quantized.shape[-1] * 2), mode="nearest")y = self.encoder_ssl(y * y_mask, y_mask)text_mask = torch.unsqueeze(commons.sequence_mask(text_lengths, text.size(1)), 1).to(y.dtype)if test == 1:text[:, :] = 0text = self.text_embedding(text).transpose(1, 2)text = self.encoder_text(text * text_mask, text_mask)y = self.mrte(y, y_mask, text, text_mask, ge)# self.encoder_ssl, self.encoder_text, self.encoder2 结构一样y = self.encoder2(y * y_mask, y_mask)if(speed!=1):y = F.interpolate(y, size=int(y.shape[-1] / speed)+1, mode="linear")y_mask = F.interpolate(y_mask, size=y.shape[-1], mode="nearest")stats = self.proj(y) * y_maskm, logs = torch.split(stats, self.out_channels, dim=1)return y, m, logs, y_mask
相关文章:

GPT-SoVITS
文章目录 model archS1 ModelS2 model model arch S1 model: AR model–ssl tokensS2 model: VITS,ssl 已经是mel 长度线性相关,MRTE(ssl_codes_embs, text, global_mel_emb)模块,将文本加强相关,学到一个参考结果 S1 Model cla…...

linux高级编程——文件IO(常用函数大全)
1.相关介绍及常用函数 Linux高级编程中的目录IO操作是文件系统编程的一个重要组成部分,主要涉及到目录的打开、读取、遍历和关闭等操作。以下是一些基本的目录IO操作和相关的系统调用函数 1.1 opendir函数 打开目录:使用opendir函数打开一个目录&#…...

matplotlib画图
Matplotlib 先写一个最简单的: import matplotlib.pyplot as plt plt.plot([1,4],[2,8]) #plot画折线图plt.show() 确定两个点画一条线 import matplotlib.pyplot as plt x[1,23,4,56,7,6] #x轴数据 y[22,44,56,67,43,2] #y轴数据 s[22,43,33,44,43,7] plt.p…...

Jetpack 各种框架简介
Jetpack是Google推出的一套为Android开发提供极大便利的组件、工具和指导集,旨在帮助开发者快速构建高质量的应用,并遵循最佳实践。 Jetpack不仅是一个提高开发效率的工具集,还是Android开发的未来方向。它通过整合各种组件和工具࿰…...

海康VisionMaster使用学习笔记5-开机自启动
开机自启动 在实际应用中,用户会希望机台上电开机后,软件能自启动避免现场人员误操作,减少机台重新上电时的操作步骤以提升效率。 设置 打开VM,点击设置,软件设置->开机自启动->勾选开机自启动->确定 默认运行界面 启动时以设定的…...

驾驭数据之序:SQL序列的奥秘与实现
标题:驾驭数据之序:SQL序列的奥秘与实现 摘要 在数据库管理中,保证数据的有序性和唯一性是至关重要的。SQL序列(Sequence)作为一种强大的数据库对象,为我们提供了一种在不同数据库系统中生成连续数字的手…...

【LeetCode】148. 排序链表
排序链表 题目描述: 给你链表的头结点 head ,请将其按 升序 排列并返回 排序后的链表 。 示例 1: 输入:head [4,2,1,3] 输出:[1,2,3,4]示例 2: 输入:head [-1,5,3,4,0] 输出:…...

阿里云-java调用短信服务,第三方接口的开启(傻瓜式教程)
第一步:在浏览器中,搜索阿里云 第二步:打开aly的主页 第三步:在最上方的导航栏中,找到云市场,注意不要点击,会自动有触发悬浮框出现,在悬浮框中找到 短信 第四步:点击 短…...

以node / link文件表征的道路网络-----基于南京公路公开数据做路径规划(下)------dijkstra算法的一些简单花样
在不改变dijkstra算法本身的情况下,完全可以从数据源的角度出发,解决我们的一些简单需求: 比较初级且粗暴的玩法,可以是强行赋予一些link极端的路段长度。 对于我们坚决不希望车辆行驶的道路、禁行区、或是危险区,就…...

计算机操作员中级理论知识试题
计算机操作员中级理论知识试题 一、单项选择题 在ASCII编码中,无法显示或打印的字符是()。 A.字符$,%,# B.运算符号*,.,/ C.空格 D.ASCII编码值在0-30间的控制符号将十进制数31.625转换成十六进制数是() A.115.10 B.If.a C.37.5 D.If.10在计算机中,同统一指挥和控制计…...

Redis主从同步配置
1: 安装Redis 参考 linux ubuntu安装redis_ubuntu离线安装redis7.2.5-CSDN博客 2:创建目录 到达redis 根目录 cd /usr/redis/# 创建主从工作目录 mkdir -p replication/6379 # master 节点 mkdir -p replication/6378 # 从节点 mkdir -p replication/6377 # 从节点…...

输出重定向
输出重定向是指将程序的输出(标准输出、错误输出等)重定向到指定的位置,而不是默认的输出设备(通常是终端/控制台)。在 Unix/Linux 系统中,输出重定向通过使用符号 >、>>、2> 等来实现。 常见…...

ubuntu20.04挂载机械硬盘
环境说明 1.基于清华源地址下载的ubuntu20.04制作的系统盘,然后安装在PC上(固态硬盘) 2.机械硬盘无法看见 目的 挂载机械硬盘,开机就能自动启动/挂载 参考链接 https://blog.csdn.net/qq_35624642/article/details/137713143…...

Python轻量级 NoSQL 数据库之tinydb使用详解
概要 在现代应用开发中,使用数据库来存储和管理数据是非常常见的需求。对于简单的数据存储需求,关系型数据库可能显得过于复杂。TinyDB 是一个纯 Python 实现的轻量级 NoSQL 数据库,专为嵌入式场景设计,适用于小型项目、原型开发和教学等场景。本文将详细介绍 TinyDB 库,…...

【数据结构】二叉树(二)遍历
上篇已经了解对二叉树有了大概了解,本篇学习二叉树的前序、中序、后序及层序遍历的递归与非递归共7种遍历方法,快收藏吧~ 目录 1、前序遍历 递归方式: 迭代方式: 2、中序遍历 递归方式: 迭代方式: …...

NGINX 常用内置变量
目录 $remote_addr 变量 $args 变量 $is_args 变量 $document_root 变量 $document_uri 变量 $host 变量 $limit_rate 变量 $remote_port 变量 $remote_port --显示客户端端口 $request_method 变量 --返回请求方式 $request_filename 变量 --返回请求实际路径 $request_uri…...

Windows采用VS2019实现Open3D的C++应用
1、参考链接 https://blog.csdn.net/qq_31254435/article/details/137799739 但是,我的方法和上述链接不大一样,我是采用VS2019进行编译的,方便在Windows平台上验证各种算法。 2、创建一个VS2019的C Console工程 #include <iostream>…...

冒泡排序、选择排序、插入排序,三种简单排序算法的区别?
1、冒泡排序 冒泡排序是从下标 1 遍历到 n,每当遇到大于下一个的,就和上一个交换位置,这样最大的就移动到了 n 的位置,然后从头再从 1 遍历到 n-1,把第二大的移动到 n-1 的位置,依此类推,每次从…...

Docker 日志管理
一、ELK -Filebeat Elasticsearch 数据的存储和检索 常用端口: 9100:elasticsearch-head提供web访问 9200:elasticsearch与其他程序连接或发送消息 9300:elasticsearch集群状态 Logstash 有三个组件构成input,fi…...

JavaScript初级——基础知识
一、JS的HelloWord 1、JS的代码需要编写到script标签中 2、JS的执行是根据语句从上到下一次执行的。 二、JS的编写位置 1、可以将js代码编写到标签的onclick属性中,当我们点击按钮时,js代码才会执行。 2、可以将js代码写在超链接的href属性中࿰…...

0817(持久层框架:JDBC,MyBatis)
三层架构(表现层,业务层,持久层) java中框架的概述(表现层、业务层、持久层的关系)_控制层业务层持久层的关系-CSDN博客 框架:框架一般处在低层应用平台(如J2EE)和高层…...

在亚马逊云科技上安全、合规地创建AI大模型训练基础设施并开发AI应用服务
项目简介: 小李哥将继续每天介绍一个基于亚马逊云科技AWS云计算平台的全球前沿AI技术解决方案,帮助大家快速了解国际上最热门的云计算平台亚马逊云科技AWS AI最佳实践,并应用到自己的日常工作里。 本次介绍的是如何在亚马逊云科技利用Servi…...

无人机模拟训练室技术详解
无人机模拟训练室作为现代无人机技术培训的重要组成部分,集成了高精度模拟技术、先进的数据处理能力及高度交互的操作界面,为无人机操作员提供了一个安全、高效、接近实战的训练环境。以下是对无人机模拟训练室技术的详细解析,涵盖系统基础概…...

【Spring框架】
一、引言二、Spring核心概念三、Spring入门示例四、进一步了解Spring的依赖注入五、Spring的面向切面编程(AOP)六、总结 一、引言 Spring框架自2003年发布以来,凭借其轻量级、易于扩展的特性,在Java企业级应用开发领域得到了广泛…...

uniapp 日常业务 随便写写 源码
现成的组件 直接用 <template><view style"margin: 10rpx;"><view class"tea-header"><text class"tea-title">礼尚往来</text><view class"tea-view-all"><text>查看全部</text>&l…...

【软件测试】单元测试20套练习题
(一)概述 使用Java语言编写应用程序,设计测试数据,完成指定要求的白盒测试,对测试数据及相应测试结果进行界面截图,将代码以及相关截图粘贴到白盒测试报告中。 (二)题目要求...

8.16 day bug
bug1 题目没看仔细 额外知识 在 Bash shell 中,! 符号用于历史扩展功能。当你在命令行中输入 ! 后跟一些文本时,Bash 会尝试从你的命令历史中查找与该文本相匹配的命令。这是一种快速重用之前执行过的命令的方法。 如何使用历史扩展 基本用法: !strin…...

《Nginx核心技术》第11章:实现MySQL数据库的负载均衡
作者:冰河 星球:http://m6z.cn/6aeFbs 博客:https://binghe.gitcode.host 文章汇总:https://binghe.gitcode.host/md/all/all.html 星球项目地址:https://binghe.gitcode.host/md/zsxq/introduce.html 沉淀,…...

使用 Gnosis Safe 创建多签名钱包
创建多签名钱包可以通过多个步骤完成,具体取决于你使用的平台或工具。下面我将介绍使用 Gnosis Safe 创建多签名钱包的过程,因为它是目前以太坊生态中最受欢迎且功能强大的多签名钱包之一。 目录 使用 Gnosis Safe 创建多签名钱包1. 准备工作2. 访问 Gnosis Safe3. 创建多签名…...

LeetCode 算法:前 K 个高频元素 c++
原题链接🔗:前 K 个高频元素 难度:中等⭐️⭐️ 题目 给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。 示例 1: 输入: nums [1,1,1,2,2,3], k 2 输出: [1,2] 示例 2…...