当前位置: 首页 > news >正文

Python做统计图之美

Python数据分析可视化

案例效果图

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib# 数据
data = {"房型": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],"住宅类型": ["普通宅", "普通宅", "普通宅", "非普通宅", "非普通宅", "非普通宅", "非普通宅", "非普通宅", "其他", "其他", "非普通宅"],"容积率": ["列入", "列入", "列入", "列入", "列入", "列入", "列入", "列入", "不列入", "不列入", "不列入"],"开发成本": [4263, 4323, 4532, 5288, 5268, 5533, 5685, 4323, 2663, 2791, 2982],"房型面积": [77, 98, 117, 145, 156, 167, 178, 126, 103, 129, 133],"建房套数": [250, 250, 150, 250, 250, 250, 250, 75, 150, 150, 75],"开发成本 (元/)": [4263, 4323, 4532, 5288, 5268, 5533, 5685, 4323, 2663, 2791, 2982],"售价 (元/)": [12000, 10800, 11200, 12800, 12800, 13600, 14000, 10400, 6400, 6800, 7200]
}# 创建 DataFrame
df = pd.DataFrame(data)# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei']  # 中文显示
plt.rcParams['axes.unicode_minus'] = False  # 负号显示# 创建柱状图
plt.figure(figsize=(12, 7))# 华尔街日报风格的颜色
colors = ['#003f5c', '#2f4b7c', '#665191', '#a05195', '#d45087','#f95d6a', '#ff7c43', '#ffa600', '#ffd700', '#f0e0d0', '#c2c2c2']# 绘制柱状图
bars = plt.bar(df["房型"].astype(str), df["建房套数"], color=colors, edgecolor='black')# 添加数据标签
for bar in bars:yval = bar.get_height()plt.text(bar.get_x() + bar.get_width()/2, yval + 10, f'{yval}', ha='center', va='bottom', fontsize=10, fontweight='bold', color='black')# 设置x轴刻度标签
plt.xticks(df["房型"].astype(str), [f'房型{i}' for i in df["房型"]], fontsize=12)# 设置轴标签和标题
plt.ylabel('建房套数', fontsize=12)
plt.title('不同房型的建房套数', fontsize=14, fontweight='bold')# 添加网格线
plt.grid(axis='y', linestyle='--', alpha=0.7)# 自动调整图表边距以确保内容显示完整
plt.tight_layout()# 显示图形
plt.show()

图形效果:
在这里插入图片描述

这个图的配色比较好看。

import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import rcParams# 数据
data = {"房型": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],"住宅类型": ["普通宅", "普通宅", "普通宅", "非普通宅", "非普通宅", "非普通宅", "非普通宅", "非普通宅", "其他", "其他", "非普通宅"],"容积率": ["列入", "列入", "列入", "列入", "列入", "列入", "列入", "列入", "不列入", "不列入", "不列入"],"开发成本": [4263, 4323, 4532, 5288, 5268, 5533, 5685, 4323, 2663, 2791, 2982],"房型面积": [77, 98, 117, 145, 156, 167, 178, 126, 103, 129, 133],"建房套数": [250, 250, 150, 250, 250, 250, 250, 75, 150, 150, 75],"开发成本 (元/平方米)": [4263, 4323, 4532, 5288, 5268, 5533, 5685, 4323, 2663, 2791, 2982],"售价 (元/平方米)": [12000, 10800, 11200, 12800, 12800, 13600, 14000, 10400, 6400, 6800, 7200]
}# 创建 DataFrame
df = pd.DataFrame(data)# 设置字体
rcParams['font.sans-serif'] = ['SimHei']  # 例如,使用 SimHei 字体显示中文
rcParams['axes.unicode_minus'] = False    # 显示负号# 创建散点图
plt.figure(figsize=(14, 7))
scatter = plt.scatter(df["房型面积"], df["售价 (元/平方米)"], c=df["开发成本"], cmap='viridis', s=100, edgecolors='k')
plt.colorbar(scatter, label='开发成本 (元/平方米)')
plt.xlabel('房型面积 (平方米)')
plt.ylabel('售价 (元/平方米)')
plt.title('房型面积与售价以及成本的关系')
plt.grid(True)# 在每个数据点上标记房型,保持一定距离
for i in range(len(df)):plt.text(df["房型面积"][i] + 2, df["售价 (元/平方米)"][i] + 200, f'房型{i + 1}', fontsize=9, ha='left')plt.show()

散点图效果如下:
在这里插入图片描述

散点图可以同时反应3个关系。

import pandas as pd
import matplotlib.pyplot as plt# 数据
data = {"房型": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],"建房套数": [250, 250, 150, 250, 250, 250, 250, 75, 150, 150, 75]
}# 创建 DataFrame
df = pd.DataFrame(data)# 饼图绘制
plt.figure(figsize=(10, 8))# 高级感配色方案
colors = ['#6C5B7B', '#C06C84', '#F67280', '#F8B195', '#F9D5A8', '#F3B6A3', '#E1C6C1', '#D9B8C4', '#C9A7B4', '#B68583', '#A9A5A0']# 绘制饼图
plt.pie(df["建房套数"], labels=[f'房型{i}' for i in df["房型"]], colors=colors, autopct='%1.1f%%', startangle=140, wedgeprops={'edgecolor': 'black'})# 添加标题
plt.title('不同房型建造套数的占比')# 显示图形
plt.show()

一个简单的饼图:

在这里插入图片描述

看起来比较清爽。

import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm, colors# 设置支持中文的字体(使用默认的或者系统中可用的字体)
plt.rcParams['font.sans-serif'] = ['SimHei']  # SimHei 是黑体字的中文字体
plt.rcParams['axes.unicode_minus'] = False   # 解决负号 '-' 显示问题# 提供的数据
labels = ['房型 1', '房型 2', '房型 3', '房型 4', '房型 5', '房型 6', '房型 7', '房型 8', '房型 9', '房型 10', '房型 11']
heights = [0.0606, 0.0909, 0.0758, 0.0909, 0.1061, 0.1212, 0.1364, 0.0909, 0.0303, 0.0455, 0.0606]# 按高度排序数据(顺时针递增)
sorted_indices = np.argsort(heights)
sorted_labels = [labels[i] for i in sorted_indices]
sorted_heights = [heights[i] for i in sorted_indices]# 创建反转渐变色
cmap = cm.get_cmap('plasma_r')  # 使用反转的渐变色
norm = colors.Normalize(vmin=min(sorted_heights), vmax=max(sorted_heights))
colors_map = [cmap(norm(height)) for height in sorted_heights]# 设置图形和极坐标
plt.figure(figsize=(12, 12))
ax = plt.subplot(111, polar=True)# 设置高度和宽度
width = 2 * np.pi / len(sorted_heights)
angles = [i * width for i in range(len(sorted_heights))]# 绘制条形图
bars = ax.bar(x=angles, height=sorted_heights, width=width, bottom=0,linewidth=1, edgecolor="white", color=colors_map)# 标签设置
labelPadding = 0.02  # 调整标签与条形的距离
for bar, angle, height, label in zip(bars, angles, sorted_heights, sorted_labels):rotation = np.rad2deg(angle)alignment = "left"if angle >= np.pi / 2 and angle < 3 * np.pi / 2:alignment = "right"rotation = rotation + 180ax.text(x=angle, y=bar.get_height() + labelPadding,s=label, ha=alignment, va='center', rotation=rotation,rotation_mode="anchor")ax.set_thetagrids([], labels=[])
plt.show()

这是一个比较亮眼的图:
在这里插入图片描述

有点像旋转楼梯一样。

import matplotlib.pyplot as plt
import numpy as np# 提供的数据
labels = ['房型 1', '房型 2', '房型 3', '房型 4', '房型 5', '房型 6', '房型 7', '房型 8', '房型 9', '房型 10', '房型 11']
values = [0.0606, 0.0909, 0.0758, 0.0909, 0.1061, 0.1212, 0.1364, 0.0909, 0.0303, 0.0455, 0.0606]# 计算角度和条形宽度
angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False).tolist()
angles += angles[:1]  # 完成圆圈values += values[:1]  # 完成圆圈# 创建图形和轴
fig, ax = plt.subplots(figsize=(10, 10), subplot_kw=dict(polar=True))# 绘制圆环
ax.fill(angles, values, color='lightblue', alpha=0.5)
ax.plot(angles, values, color='blue', linewidth=2)  # 边界# 添加标签
for i, (angle, value, label) in enumerate(zip(angles[:-1], values[:-1], labels)):x = (value + 0.05) * np.cos(angle)y = (value + 0.05) * np.sin(angle)ax.text(x, y, label, horizontalalignment='center', verticalalignment='center')# 设置标签和刻度
ax.set_yticklabels([])  # 移除y轴刻度标签
ax.set_xticks(angles[:-1])  # 设置x轴刻度
ax.set_xticklabels(labels, rotation=45, ha='right')  # 设置x轴标签# 显示图形
plt.show()

上面是一个雷达图:

在这里插入图片描述

用于成绩,各种表现,反应强项和若点。

import matplotlib.pyplot as plt
import numpy as np# 数据
labels = ['房型 1', '房型 2', '房型 3', '房型 4', '房型 5', '房型 6', '房型 7', '房型 8', '房型 9', '房型 10', '房型 11']
sizes = [0.0606, 0.0909, 0.0758, 0.0909, 0.1061, 0.1212, 0.1364, 0.0909, 0.0303, 0.0455, 0.0606]# 生成渐变色
cmap = plt.get_cmap('Blues')  # 可以选择其他渐变色图
colors = [cmap(i / len(sizes)) for i in range(len(sizes))]# 创建圆环图
fig, ax = plt.subplots()
wedges, texts, autotexts = ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90, wedgeprops=dict(width=0.4), colors=colors)# 设置中文显示
for text in texts:text.set_fontsize(10)text.set_color('black')for autotext in autotexts:autotext.set_fontsize(8)autotext.set_color('black')# 保持圆形
ax.axis('equal')plt.title('房型分布圆环图')
plt.show()

上面是一个圆环图,通过圆环的面积,表示占比:
在这里插入图片描述

渐变色的颜色,看做清新顺畅。

相关文章:

Python做统计图之美

Python数据分析可视化 案例效果图 import pandas as pd import matplotlib.pyplot as plt import matplotlib# 数据 data {"房型": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],"住宅类型": ["普通宅", "普通宅", "普通宅", &q…...

激光雷达点云投影到图像平面

将激光雷达点云投影到图像平面涉及几何变换和相机模型的应用。以下是该过程的基本原理&#xff1a; 1. 坐标系转换 激光雷达生成的点云通常位于激光雷达的坐标系中&#xff0c;而图像则在相机坐标系中。为了将点云投影到图像上&#xff0c;首先需要将点云从激光雷达坐标系转换…...

[python]将anaconda默认创建环境python版本设置为32位的

首先看看gpt怎么回答的 装了Anaconda。如果尚未安装&#xff0c;可以从Anaconda官网下载适合你的操作系统的安装程序&#xff0c;并按照安装向导进行安装。 二、创建32位Python环境 在Anaconda中&#xff0c;你可以通过修改环境变量来尝试切换到32位模式&#xff08;尽管这并…...

Jmeter+Influxdb+Grafana平台监控性能测试过程(三种方式)

一、Jmeter自带插件监控 下载地址&#xff1a;Install :: JMeter-Plugins.org 安装&#xff1a;下载后文件为jmeter-plugins-manager-1.3.jar&#xff0c;将其放入jmeter安装目录下的lib/ext目录&#xff0c;然后重启jmeter&#xff0c;即可。 启动Jmeter&#xff0c;测试计…...

[创业之路-135] :ERP、PDM、EDM、Git各种的用途和区别,硬件型初创公司需要哪些管理工具?

目录 前言&#xff1a; 一、ERP&#xff08;企业资源计划&#xff09; 二、PDM&#xff08;产品数据管理系统&#xff09; 三、EDM&#xff08;文档管理系统&#xff0c;有时也指电子邮件营销&#xff09; 四、Git 总结 五、硬件研发、生产型企业需要哪些管理工具&#…...

通过剪枝与知识蒸馏优化大型语言模型:NVIDIA在Llama 3.1模型上的实践与创新

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…...

DOM型xss靶场实验

xss是什么&#xff1f; XSS是一种经常出现在web应用中的计算机安全漏洞&#xff0c;它允许恶意web用户将代码植入到提供给其它用户使用的页面中。比如这些代码包括HTML代码和客户端脚本。攻击者利用XSS漏洞旁路掉访问控制--例如同源策略(same origin policy)。这种类型的漏洞由…...

华为---端口隔离简介和示例配置

目录 1. 端口隔离概念 2. 端口隔离作用 3. 端口隔离优点 4. 端口隔离缺点 5. 端口隔离的方法和应用场景 6. 端口隔离配置 6.1 端口隔离相关配置命令 6.2 端口隔离配置思路 7. 示例配置 7.1 示例场景 7.2 网络拓扑图 7.3 基本配置 7.4端口隔离配置与验证 7.4.1 双…...

Android 架构模式之 MVC

目录 架构设计的目的对 MVC 的理解Android 中 MVC 的问题试吃个小李子ViewModelController 大家好&#xff01; 作为 Android 程序猿&#xff0c;MVC 应该是我们第一个接触的架构吧&#xff0c;从开始接触 Android 那一刻起&#xff0c;我们就开始接触它&#xff0c;可还记得我…...

节点使用简介:comfyui-photoshop

1、安装comfyui-photoshop 略过 一点要注意的是&#xff1a;在Photoshop上的安装增效工具&#xff0c;要通过Creative Cloud 桌面应用程序进行安装&#xff0c;才能成功在增效工具中显示&#xff0c;直接通过将文件解压到Plug-ins路径行不通&#xff08;至少对我来说行不通&am…...

使用Go语言将PDF文件转换为Base64编码

使用 Go 语言将 Base64 编码转换为 PDF 文件-CSDN博客本文介绍了如何使用 Go 语言将 Base64 编码转换为 PDF 文件&#xff0c;并保存到指定路径。https://blog.csdn.net/qq_45519030/article/details/141225772 在现代编程中&#xff0c;数据转换和编码是常见的需求。本文将介绍…...

XSS Game

关卡网址&#xff1a;XSS Game - Learning XSS Made Simple! | Created by PwnFunction 1.Ma Spaghet! 见源代码分析得&#xff0c;somebody接收参数&#xff0c;输入somebody111查看所在位置 使用input标签 <input onmouseoveralert(1337)> 2.Jefff jeff接收参数,在ev…...

???牛客周赛55:虫洞操纵者

题目描述 \,\,\,\,\,\,\,\,\,\,你需要在一个可以上下左右移动的 nnn\times nnn 棋盘上解开一个迷宫&#xff1a;棋盘四周都是墙&#xff1b;每个方格要么是可以通过的空方格 ′0′\sf 0′0′ &#xff0c;要么是不可通过的墙方格 ′1′\sf 1′1′ &#xff1b;你可以沿着空方格…...

Unity3D开发之OnCollisionXXX触发条件

A和B碰撞触发OnCollision函数条件如下&#xff1a; 1.A和B都要有collider。&#xff08;子物体有也可以&#xff09; 2.A和B至少有一个刚体&#xff08;Rigidbody&#xff09;组件&#xff0c;且刚体的isKinematic为false。如果为true不会触发。 3.挂载脚本的物体必须有刚体…...

spfa()算法(求最短路)

spfa算法是对bellman_ford算法的优化&#xff0c;大部分求最短路问题都可以用spaf算法来求。 注意&#xff1a; &#xff08;1&#xff09;如若图中有负权回路&#xff0c;不能用spfa算法&#xff0c;要用bellman_ford算法&#xff1b;若只有负权边&#xff0c;则可以用 spf…...

聊聊国产数据库的生态系统建设

生态系统是指在自然界中&#xff0c;生物与环境构成统一的整体&#xff0c;之间相互影响相互制约&#xff0c;并在一定时期内处于相对稳定的动态平衡状态。所谓数据库的生态系统&#xff0c;从用户的角度看&#xff0c;就是充分打通产品使用过程中上下游的关联&#xff0c;使其…...

JDK源码解析:LinkedList

1、背景 我们咨询一下腾讯混元大模型&#xff0c;什么是“LinkedList”。 以下是混元大模型的回答&#xff1a; LinkedList 是 Java 集合框架中的一种数据结构&#xff0c;它实现了 List 和 Deque 接口。LinkedList 是一个双向链表&#xff0c;这意味着每个元素都包含对前一个和…...

drawio的问题

drawio的问题 先给出drawio的链接https://app.diagrams.net/ 我在用overleaf写论文的过程中&#xff0c;发现了一个问题&#xff0c;就是使用drawio画好图之后&#xff0c;只能保存以下几个选项&#xff1a; 但是不管是什么类型&#xff0c;在overleaf上面图片都不显示。如果…...

零基础学习Redis(3) -- Redis常用命令

Redis是一个 客户端-服务器 结构的程序&#xff0c;Redis客户端和服务器可以在同一台主机上&#xff0c;也可以在不同主机上&#xff0c;客户端和服务器之间通过网络进行通信。服务器端负责存储和管理数据。客户端则可以通过命名对服务端的数据进行操作。 Redis客户端有多种&a…...

响应式Web设计:纯HTML和CSS的实现技巧-1

响应式Web设计&#xff08;Responsive Web Design, RWD&#xff09;是一种旨在确保网站在不同设备和屏幕尺寸下都能良好运行的网页设计策略。通过纯HTML和CSS实现响应式设计&#xff0c;主要依赖于媒体查询&#xff08;Media Queries&#xff09;、灵活的布局、可伸缩的图片和字…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

MySQL 主从同步异常处理

阅读原文&#xff1a;https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主&#xff0c;遇到的这个错误&#xff1a; Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一&#xff0c;通常表示&#xff…...

Sklearn 机器学习 缺失值处理 获取填充失值的统计值

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...

【51单片机】4. 模块化编程与LCD1602Debug

1. 什么是模块化编程 传统编程会将所有函数放在main.c中&#xff0c;如果使用的模块多&#xff0c;一个文件内会有很多代码&#xff0c;不利于组织和管理 模块化编程则是将各个模块的代码放在不同的.c文件里&#xff0c;在.h文件里提供外部可调用函数声明&#xff0c;其他.c文…...

EasyRTC音视频实时通话功能在WebRTC与智能硬件整合中的应用与优势

一、WebRTC与智能硬件整合趋势​ 随着物联网和实时通信需求的爆发式增长&#xff0c;WebRTC作为开源实时通信技术&#xff0c;为浏览器与移动应用提供免插件的音视频通信能力&#xff0c;在智能硬件领域的融合应用已成必然趋势。智能硬件不再局限于单一功能&#xff0c;对实时…...

当下AI智能硬件方案浅谈

背景&#xff1a; 现在大模型出来以后&#xff0c;打破了常规的机械式的对话&#xff0c;人机对话变得更聪明一点。 对话用到的技术主要是实时音视频&#xff0c;简称为RTC。下游硬件厂商一般都不会去自己开发音视频技术&#xff0c;开发自己的大模型。商用方案多见为字节、百…...