当前位置: 首页 > news >正文

机器学习 之 线性回归算法

目录

线性回归:理解与应用

什么是线性回归?

一元线性回归

正态分布的重要性

多元线性回归

实例讲解

数据准备

数据分析

构建模型

训练模型

验证模型

应用模型

代码实现


线性回归:理解与应用

线性回归是一种广泛使用的统计方法,用于建模和预测因变量与一个或多个自变量之间的线性关系。它是机器学习中最基础也是最重要的算法之一,适用于多种实际场景,如预测销售额、评估房地产价值、预测股票价格等。本文将介绍线性回归的基本概念,并通过具体的例子来展示其应用。

什么是线性回归?

线性回归是一种监督学习技术,用于预测连续数值型的目标变量。它假设自变量与因变量之间存在线性关系,并试图找到最佳拟合直线来描述这种关系。线性回归的核心在于最小化预测值与实际值之间的差距,即误差平方和(SSE)。

线性回归可以分为两种主要类型:一元线性回归和多元线性回归。

一元线性回归

当只有一个自变量时,我们称之为一元线性回归。一元线性回归的数学模型可以表示为: y=β0+β1x+εy=β0​+β1​x+ε 其中,

  • yy 是因变量(也称为响应变量)。
  • xx 是自变量(也称为解释变量)。
  • β0β0​ 是截距项,当 x=0x=0 时的 yy 的值。
  • β1β1​ 是斜率,表示自变量 xx 每增加一个单位时因变量 yy 的变化量。
  • εε 是随机误差项,表示模型未能捕捉到的影响 yy 的因素。 
实例:

以下为实验数据:

 

下列为实例代码:

import pandas as pd  # 导入Pandas库,用于数据处理
from matplotlib import pyplot as plt  # 导入Matplotlib库的pyplot模块,用于绘图
from sklearn.linear_model import LinearRegression  # 导入Scikit-learn库的LinearRegression类,用于线性回归分析data = pd.read_csv('data.csv')  # 读取CSV文件中的数据到Pandas DataFrameplt.scatter(data.广告投入, data.销售额)  # 绘制散点图,其中x轴为'广告投入',y轴为'销售额'
plt.show()  # 显示图表corr = data.corr()  # 计算数据的相关系数矩阵lr = LinearRegression()  # 创建一个线性回归模型对象
x = data[['广告投入']]  # 选择DataFrame中的'广告投入'这一列作为特征变量
y = data[['销售额']]  # 选择DataFrame中的'销售额'这一列作为目标变量lr.fit(x, y)  # 使用fit方法训练模型result = lr.predict(x)  # 使用训练好的模型对输入特征进行预测
score = lr.score(x, y)  # 计算模型对训练数据的解释方差比(R²)a = round(lr.intercept_[0], 2)  # 截距项(保留两位小数)
b = round(lr.coef_[0][0], 2)  # 斜率项(保留两位小数)
print(f"线性回归模型为:y = {b}x + {a}")  # 输出线性回归模型方程

 运行出来的散点图为:

 结果为:

正态分布的重要性

在一元线性回归中,随机误差项 εε 通常假定为独立同分布的正态分布。这是因为正态分布是许多实际问题的基础假设之一,它保证了回归参数估计的有效性和可靠性。正态分布的期望为 0,方差相同,为σ2^2。

多元线性回归

当有多个自变量时,我们称之为多元线性回归。多元线性回归的数学模型可以表示为: y=β0+β1x1+β2x2+…+βpxp+εy=β0​+β1​x1​+β2​x2​+…+βp​xp​+ε 其中,

  • yy 是因变量。
  • x1,x2,…,xpx1​,x2​,…,xp​ 是自变量。
  • β0β0​ 是截距项。
  • β1,β2,…,βpβ1​,β2​,…,βp​ 是斜率,表示每个自变量对因变量的影响。
  • εε 是随机误差项。

实例讲解

为了更好地理解线性回归的应用,我们以一个具体的实例来说明。假设我们有一组数据,包含不良贷款、各项贷款余额、本年累计应收贷款、贷款项目个数以及本年固定资产投资额等信息。我们的目标是使用这些数据来预测不良贷款的金额。

数据准备 

我们从 Excel 文件 "案例.xlsx" 中读取数据。

数据分析

我们首先分析这些变量之间的相关性,以确定哪些变量可能与不良贷款有关联。

构建模型

我们选择使用 "各项贷款余额" 和 "本年固定资产投资额" 作为自变量,"不良贷款" 作为因变量,构建多元线性回归模型。

训练模型

使用数据集的一部分来训练模型,其余部分用于验证模型的准确性。

验证模型

评估模型的性能,例如使用 R² 分数来衡量模型的拟合程度。

应用模型

使用训练好的模型进行预测。

代码实现

下面是一个 Python 代码示例,演示如何使用 pandasscikit-learn 库来完成上述任务:

import pandas as pd
from sklearn.linear_model import LinearRegression# 加载数据
data = pd.read_excel('案例.xlsx')# 创建线性回归模型
lr_model = LinearRegression()# 准备数据
X = data[['各项贷款余额', '本年累计应收贷款', '贷款项目个数', '不良贷款']]
y = data[['本年固定资产投资额']]# 训练模型
lr_model.fit(X, y)# 计算模型的决定系数 (R²)
score = lr_model.score(X, y)
print(score)# 进行预测
predictions = lr_model.predict([[100, 50, 100, 10]])
print("预测结果 (100亿元, 50亿元, 100个, 10亿元):", predictions)# 进行多个预测
predictions_multiple = lr_model.predict([[120, 60, 110, 12], [110, 40, 90, 8]])
print("多个预测结果:", predictions_multiple)# 输出模型的截距和系数  y=kx+b
b = lr_model.intercept_
k = lr_model.coef_
print("系数形状:", k.shape)print("线性回归模型为:y = {:.2f} + {:.2f} * 各项贷款余额 + {:.2f} * 本年累计应收贷款 + {:.2f} * 贷款项目个数 + {:.2f} * 不良贷款.".format(b[0], k[0][0], k[0][1], k[0][2], k[0][3]))

 运行结果:

 

结论

通过上述实例,我们可以看到线性回归模型在实际问题中的应用。希望这篇文章能帮助你更好地理解线性回归的概念,并学会如何使用它解决实际问题。

相关文章:

机器学习 之 线性回归算法

目录 线性回归:理解与应用 什么是线性回归? 一元线性回归 正态分布的重要性 多元线性回归 实例讲解 数据准备 数据分析 构建模型 训练模型 验证模型 应用模型 代码实现 线性回归:理解与应用 线性回归是一种广泛使用的统计方法&…...

ThreadLoad如何防止内存溢出

优质博文:IT-BLOG-CN 从 ThreadLocalMap看 ThreadLocal使用不当的内存泄漏问题 【1】基础概念 : 首先我们先看看ThreadLocalMap的类图,我们知道 ThreadLocal只是一个工具类,他为用户提供get、set、remove接口操作实际存放本地变…...

2024.8.19 学习记录 —— 作业

一、TCP机械臂测试 #include <myhead.h>#define SER_PORT 8888 // 与服务器保持一致 #define SER_IP "192.168.0.114" // 服务器ip地址int main(int argc, const char *argv[]) {// 创建文件描述符打开键盘文件int fd open("/dev/input/event1…...

Java 阿里云视频直播开发流程

首先来看一下直播效果 推流工具有很多种&#xff08;例如OBS、阿里云直播Demo推流、等等&#xff0c;我用的是芯象导播&#xff09;阿里播放器地址 一、直播基础服务概述 官方文档说明 二、直播域名配置需要两个域名&#xff08;推流域名、播流域名&#xff09; 官方文档说…...

SQLite 轻量级的嵌入式关系型数据库的替代软件

SQLite 是一个轻量级的嵌入式关系型数据库&#xff0c;由于其简单易用和跨平台的特性&#xff0c;被广泛应用于各种应用程序中。以下是一些可作为SQLite替代品的数据库软件或可视化管理工具&#xff1a; 1. **SQLiteStudio**&#xff1a;这是一个免费、开源的跨平台SQLite数据…...

Flutter-自适用高度PageView

需求 在 Flutter 中&#xff0c;PageView 是一个非常常用的组件&#xff0c;能够实现多个页面的滑动切换。然而&#xff0c;默认的 PageView 高度是固定的&#xff0c;这在展示不同高度的页面时&#xff0c;可能会导致不必要的空白或内容裁剪问题。为了使 PageView 能够根据每…...

群晖NAS本地搭建可远程交互的大型语言模型LLM聊天机器人

文章目录 前言1. 拉取相关的Docker镜像2. 运行Ollama 镜像3. 运行Chatbot Ollama镜像4. 本地访问5. 群晖安装Cpolar6. 配置公网地址7. 公网访问8. 固定公网地址 前言 本文主要分享如何在群晖NAS本地部署并运行一个基于大语言模型Llama 2的个人本地聊天机器人并结合内网穿透工具…...

TypeScript 构建工具之 webpack

在实际开发中&#xff0c;直接使用TypeScript 编译器的情况不多。 在项目中&#xff0c;需要使用构建工具对代码进行打包&#xff0c;不可能脱离项目使用TypeScript 编译器单独打包TypeScript 。 那如何将 webpack 和 TypeScript 进行集成&#xff1f; 参考文档&#xff1a; w…...

conda环境下在pycharm中调试scrapy项目

前提条件 已经创建好了conda环境已经安装好了scrapy框架项目初始化完成 编写一个爬虫脚本 import scrapyclass StackOverflowSpider(scrapy.Spider):name stackoverflowstart_urls [http://stackoverflow.com/questions?sortvotes]def parse(self, response):print("…...

contenteditable=“true“的标签限制字数的时候修改光标位置

contenteditable"true"的标签限制字数的时候修改光标位置 有时候input和textarea并不能完全满足ui需求&#xff0c;这个时候我们就用contenteditable"true"来将别的标签修改为可编辑状态&#xff0c;但当我们通过js修改了内容之后光标的位置就是一个问题&…...

51单片机-LED灯蜂鸣器数码管按键DS18B20温度传感器

LDE灯的相关程序 LED灯闪烁 LED流水灯 方法1 方法二&#xff1a; 因为P1口可以直接控制P1^0~P1^7的8个led灯&#xff0c;利用一个8位的二进制数字来进行控制即可。如果要点亮P1^0 只需要给P1口传递 1111 1110即可。 蜂鸣器的使用 什么是蜂鸣器&#xff1f; 蜂鸣器是一种一…...

笔记本一线品牌有哪些

笔记本电脑的一线品牌通常指的是在市场上具有较高市场份额、良好口碑、较强的技术实力和服务能力的品牌。根据目前的信息&#xff0c;笔记本电脑市场的一线品牌主要包括以下几个&#xff1a; 联想 (Lenovo)&#xff1a;联想在全球笔记本市场上的占有率较高&#xff0c;其产品线…...

mysql聚合函数和分组

我最近开了几个专栏&#xff0c;诚信互三&#xff01; > |||《算法专栏》&#xff1a;&#xff1a;刷题教程来自网站《代码随想录》。||| > |||《C专栏》&#xff1a;&#xff1a;记录我学习C的经历&#xff0c;看完你一定会有收获。||| > |||《Linux专栏》&#xff1…...

ubuntu20.04+RealSenseD455

ubuntu20.04安装驱动双目相机RealSenseD455 安装环境安装RealSense SDK 2.0ROS包安装启动Realsense摄像头存在的 bugD455标定安装环境 系统:Ubuntu20.04 ROS:Noetic 视觉传感器:Intel RealSense D455 安装RealSense SDK 2.0 该安装有两种方式,一个是用命令安装,另一个是…...

WAF绕过技巧

WAF绕过技巧 WAF&#xff08;Web Application Firewall&#xff09;是一种安全系统&#xff0c;旨在监控和控制网络流量&#xff0c;以防止攻击&#xff0c;如SQL 注入、跨站脚本&#xff08;XSS&#xff09;和拒绝服务&#xff08;DoS&#xff09;。 WAF 可以通过多种方式绕过…...

HarmonyOS应用三之组件生命周期和参数传递

目录&#xff1a; 1、生命周期的执行顺序2、页面数据传递3、图片的读取4、数据的备份和恢复5、轮播图6、页面布局图 1、生命周期的执行顺序 /** Copyright (c) 2023 Huawei Device Co., Ltd.* Licensed under the Apache License, Version 2.0 (the "License");* yo…...

[Qt][Qt 网络][上]详细讲解

目录 0.概述1.UDP Socket1.核心API概览2.回显服务器3.回显客户端 0.概述 要使用Qt中有关网络编程的API&#xff0c;需要添加network模块 1.UDP Socket 1.核心API概览 主要的类有两个&#xff1a;QUdpSocket和QNetworkDatagramQUdpSocket表⽰⼀个UDP的socket⽂件 bind(const …...

读零信任网络:在不可信网络中构建安全系统21读后总结与感想兼导读

1. 基本信息 零信任网络&#xff1a;在不可信网络中构建安全系统 道格巴斯&#xff08;Doug Barth&#xff09; 著 人民邮电出版社,2019年8月出版 1.1. 读薄率 书籍总字数252千字&#xff0c;笔记总字数73194字。 读薄率73194252000≈29.5% 这个读薄率是最高的吧&#x…...

Java基础——注释

在开发中注释是必不可少的&#xff0c;帮助我们更好的标记阅读代码&#xff0c;下面介绍几种常用的注释方式。 一、注释种类 1. 单行注释 使用//一行代码来进行注释&#xff0c;只能注释一行内容 2. 多行注释 使用斜杠星号的方式 /*注释多行代码*/&#xff0c;注释多行代…...

Redis未授权访问漏洞利用合集

一、基本信息 靶机&#xff1a;IP:192.168.100.40 攻击机&#xff1a;IP:192.168.100.60 二、漏洞 & 过程 Redis 未授权访问漏洞利用无口令远程登录靶机 靶机 cd redis-4.0.8/src./redis-server ../redis.conf 攻击机 ./redis-cli -h 192.168.100.40 Redis 未授权访问…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...

Qemu arm操作系统开发环境

使用qemu虚拟arm硬件比较合适。 步骤如下&#xff1a; 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载&#xff0c;下载地址&#xff1a;https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...