第1节 线性回归模型
1. 模型概述
对于收集到的数据(xi,yi)(x_i,y_i)(xi,yi),建立线性回归模型yi=θTxi+εi(1)y_i=\theta^{^T} x_i +\varepsilon_i (1)yi=θTxi+εi(1)
需要估计的参数为θT\theta^{^T}θT,我们的目的是让估计的参数θT\theta^{^T}θT和xix_ixi组合后,得到的估计值y^i\hat{y}_iy^i与实际值yiy_iyi越接近越好,也就是随机误差项εi\varepsilon_iεi越小越好。
2. 模型求解
由于假设模型的误差项是服从独立同分布(独立:数据之间互相不影响,同分布:保证模型使用于某一类数据)的高斯分布(标准正态分布)1,即ϵ∼N(0,σ2)\epsilon \sim N(0, \sigma^2)ϵ∼N(0,σ2),则其概率密度函数为
p(ϵi)=12πσexp(−εi22σ2)(2)p(\epsilon_i)=\frac{1}{\sqrt{2\pi}\sigma }exp(-\frac{\varepsilon_i^2}{2\sigma^2})(2)p(ϵi)=2πσ1exp(−2σ2εi2)(2)
对(1)式进行变形,则有εi=yi−θTxi\varepsilon_i=y_i-\theta^{^T} x_iεi=yi−θTxi,将其带入(2)式,得
p(yi∣xi,θ)=12πσexp(−(yi−θTxi)22σ2)p(y_i|x_i,\theta)=\frac{1}{\sqrt{2\pi}\sigma }exp(-\frac{(y_i-\theta^{^T} x_i)^2}{2\sigma^2})p(yi∣xi,θ)=2πσ1exp(−2σ2(yi−θTxi)2)
因为我们的目的是让求解得出的参数θ\thetaθ和和xix_ixi组合后,得到的估计值y^i=θTxi\hat{y}_i=\theta^{^T} x_iy^i=θTxi是真实值yiy_iyi的概率越大越好,也就是让这个概率越大越好。
由于以上只是单个的样本数据,假设我们有mmm个样本数据,样本之间互相独立,则所有的样本的概率等于单个样本的概率的乘积,我们将所有样本的概率记为似然函数L(θ)L(\theta)L(θ),则
L(θ)=∏i=0m12πσexp(−(yi−θTxi)22σ2)L(\theta)=\prod \limits_{i=0}^m\frac{1}{\sqrt{2\pi}\sigma }exp(-\frac{(y_i-\theta^{^T} x_i)^2}{2\sigma^2})L(θ)=i=0∏m2πσ1exp(−2σ2(yi−θTxi)2)
由于多个式子相乘难以求解,我们可利用对数将其转化为加法。两边同时取对数,得到对数似然函数lnL(θ)lnL(\theta)lnL(θ),
lnL(θ)=ln∏i=0m12πσexp(−(yi−θTxi)22σ2)lnL(\theta)=ln\prod \limits_{i=0}^m\frac{1}{\sqrt{2\pi}\sigma }exp(-\frac{(y_i-\theta^{^T} x_i)^2}{2\sigma^2})lnL(θ)=lni=0∏m2πσ1exp(−2σ2(yi−θTxi)2)
即
lnL(θ)=mln12πσ−1σ212∑i=1m(yi−θTxi)2lnL(\theta)=mln\frac{1}{\sqrt{2\pi}\sigma }-\frac{1}{\sigma^2}\frac{1}{2}\sum_{i=1}^m(y_i-\theta^{^T} x_i)^2lnL(θ)=mln2πσ1−σ2121i=1∑m(yi−θTxi)2
要对上述式子求最大值,则相当于对12∑i=1m(yi−θTxi)2\frac{1}{2}\sum_{i=1}^m(y_i-\theta^{^T} x_i)^221∑i=1m(yi−θTxi)2求最小值,我们将其记为J(θ)J(\theta)J(θ),并取名为目标函数,则目标函数为
J(θ)=12∑i=1m(yi−θTxi)2J(\theta)=\frac{1}{2}\sum_{i=1}^m(y_i-\theta^{^T} x_i)^2J(θ)=21i=1∑m(yi−θTxi)2
那么,求解这个目标函数所使用的方法就是最小二乘法,最小二乘法的代数法解法就是对θi\theta_iθi求偏导数,令偏导数为0,再解方程组,得到θi\theta_iθi的估计值。矩阵法比代数法要简洁,下面主要讲解下矩阵法解法。
由于
J(θ)=12∑i=1m(yi−θTxi)2=12∑i=1m(θTxi−yi)2=12(Xθ−Y)T(Xθ−Y)J(\theta)=\frac{1}{2}\sum_{i=1}^m(y_i-\theta^{^T} x_i)^2=\frac{1}{2}\sum_{i=1}^m(\theta^{^T} x_i-y_i)^2=\frac{1}{2}(X\theta-Y)^{^T}(X\theta-Y)J(θ)=21i=1∑m(yi−θTxi)2=21i=1∑m(θTxi−yi)2=21(Xθ−Y)T(Xθ−Y)
我们需要对其求偏导,∂J(θ)∂θ=12∂(θTXTXθ−θTXTY−YTXθ+YTY)∂θ=12(2XTXθ−2XTY)\frac{\partial J(\theta)}{\partial \theta}=\frac{1}{2}\frac{\partial (\theta^{^T}X^{^T}X\theta-\theta^{^T}X^{^T}Y-Y^{^T}X\theta+Y^{^T}Y)}{\partial \theta}=\frac{1}{2}(2X^{^T}X\theta-2X^{^T}Y)∂θ∂J(θ)=21∂θ∂(θTXTXθ−θTXTY−YTXθ+YTY)=21(2XTXθ−2XTY),令其等于0,得θ^=(XTX)−1XTY\hat \theta=( X^{^T}X)^{-1}X^{^T}Yθ^=(XTX)−1XTY
这里,需要用到矩阵求导的公式2.
在了解正态分布之前,我们需要先了解一个概念——概率分布。概率分布是指:经过大量的重复试验,将随机事件的所有可能的出现结果的次数分布记录下来,并在坐标系中做出一条曲线,这条曲线就是数据的概率分布曲线,由概率分布曲线可以估算变量的概率。正态分布就是一种常见的概率分布,它的概率分布曲线是一个钟形曲线,生活中大量的变量都服从正态分布,例如:人群的身高、鞋码、学生成绩等。正态分布只依赖于数据的两个特征:均值和方差。标准正态分布的均值为0,方差为σ2\sigma^2σ2. ↩︎
∂XTA∂A=∂ATX∂X=A,∂XTAX∂X=AX+ATX\frac{\partial X^{^T} A }{\partial A}=\frac{\partial A^{^T} X }{\partial X}=A, \frac{\partial X^{^T} A X}{\partial X}=AX+ A^{^T} X∂A∂XTA=∂X∂ATX=A,∂X∂XTAX=AX+ATX ↩︎
相关文章:
第1节 线性回归模型
1. 模型概述 对于收集到的数据(xi,yi)(x_i,y_i)(xi,yi),建立线性回归模型yiθTxiεi(1)y_i\theta^{^T} x_i \varepsilon_i (1)yiθTxiεi(1) 需要估计的参数为θT\theta^{^T}θT,我们的目的是让估计的参数θT\theta^{^T}θT和xix_ixi…...
CodeGeeX 130亿参数大模型的调优笔记:比FasterTransformer更快的解决方案
0x0 背景 相信大家都使用或者听说过github copilot这个高效的代码生成工具。CodeGeeX类似于github copilot,是由清华大学,北京智源研究院,智谱AI等机构共同开发的一个拥有130亿参数的多编程语言代码生成预训练模型。它在vscode上也提供了插件…...
Linux驱动之并发与竞争
文章目录并发与竞争的概念原子操作原子整形操作 API 函数原子位操作 API 函数自旋锁自旋锁简介自旋锁结构体自旋锁 API 函数自旋锁的注意事项读写自旋锁读写自旋锁的API顺序锁顺序锁的APIRCU(Read-Copy-Update)RCU的API信号量信号量API互斥体互斥体的API完成量(Completion)完成…...
【密码学复习】第四讲分组密码(三)
AES算法的整体结构 AES算法的轮函数 1)字节代换(SubByte) 2)行移位(ShiftRow) 3)列混合(MixColumn) 4)密钥加(AddRoundKey)1-字节代换…...
JVM(内存划分,类加载,垃圾回收)
JVMJava程序,是一个名字为Java 的进程,这个进程就是所说的“JVM”1.内存区域划分JVM会先从操作系统这里申请一块内存空间,在这个基础上再把这个内存空间划分为几个小的区域在一个JVM进程中,堆和方法区只有一份;栈和程序…...
工作中遇到的问题 -- 你见过哪些写的特别好的代码
strPtr : uintptr((*(*stringStruct)(unsafe.Pointer(&str))).str)代码解析: 这是一段 Go 代码,它的作用是获取一个字符串变量 str 的底层指针,即字符串数据的起始地址。 这段代码涉及到了 Go 语言中的指针、类型转换和内存布局等概念&…...
基于chatGPT设计卷积神经网络
1. 简介 本文主要介绍基于chatGPT,设计一个针对骁龙855芯片设计的友好型神经网络。 提问->跑通总共花了5min左右,最终得到的网络在Cifar100数据集上与ResNet18的精度对比如下。 模型flopsparamstrain acc1/5test acc1/5ResNet18(timm)1.8211.18~98…...
java.sql.Date和java.util.Date的区别
参考答案 java.sql.Date 是 java.util.Date 的子类java.util.Date 是 JDK 中的日期类,精确到时、分、秒、毫秒java.sql.Date 与数据库 Date 相对应的一个类型,只有日期部分,时分秒都会设置为 0,如:2019-10-23 00:00:0…...
动态规划---线性dp和区间dp
动态规划(三) 目录动态规划(三)一:线性DP1.数字三角形1.1数字三角形题目1.2代码思路1.3代码实现(正序and倒序)2.最长上升子序列2.1最长上升子序列题目2.2代码思路2.3代码实现3.最长公共子序列3.1最长公共子序列题目3.2代码思路3.3代码实现4.石子合并4.1题目如下4.2代…...
常见的2D与3D碰撞检测算法
分离轴分离轴定理(Separating Axis Theorem)是用于解决2D或3D物体碰撞检测问题的一种方法。其基本思想是,如果两个物体未发生碰撞,那么可以找到一条分离轴(即一条直线或平面),两个物体在该轴上的…...
STM32 10个工程篇:1.IAP远程升级(二)
一直提醒自己要更新CSDN博客,但是确实这段时间到了一个项目的关键节点,杂七杂八的事情突然就一涌而至。STM32、FPGA下位机代码和对应Labview的IAP升级助手、波形设置助手上位机代码笔者已经调试通过,因为不想去水博客、凑数量,复制…...
Unity+ChatGpt的联动 AICommand
果然爱是会消失的,对吗 chatGpt没出现之前起码还看人家的文章,现在都是随便你。 本着师夷长技以制夷的思路,既然打不过,那么我就加入 github地址:https://github.com/keijiro/AICommand 文档用chatGpt翻译如下&#…...
STM-32:按键控制LED灯 程序详解
目录一、基本原理二、接线图三、程序思路3.1库函数3.2程序代码注:一、基本原理 左边是STM322里电路每一个端口均可以配置的电路部分,右边部分是外接设备 电路图。 配置为 上拉输入模式的意思就是,VDD开关闭合,VSS开关断开。 浮空…...
北邮22信通:(8)实验1 题目五:大整数加减法(搬运官方代码)
北邮22信通一枚~ 跟随课程进度每周更新数据结构与算法的代码和文章 持续关注作者 解锁更多邮苑信通专属代码~ 上一篇文章: 北邮22信通:(7)实验1 题目四:一元多项式(节省内存版)_青山如…...
Fiddler抓取https史上最强教程
有任何疑问建议观看下面视频 2023最新Fiddler抓包工具实战,2小时精通十年技术!!!对于想抓取HTTPS的测试初学者来说,常用的工具就是fiddler。 但是初学时,大家对于fiddler如何抓取HTTPS难免走歪路ÿ…...
STM32开发基础知识入门
C语言基础 位操作 对基本类型变量可以在位级别进行操作。 1) 不改变其他位的值的状况下,对某几个位进行设值。 先对需要设置的位用&操作符进行清零操作,然后用|操作符设值。 2) 移位操作提高代码的可读性。 3) ~取反操作使用技巧 可用于对某…...
学习操作系统的必备教科书《操作系统:原理与实现》| 文末赠书4本
使用了6年的实时操作系统,是时候梳理一下它的知识点了 摘要: 本文简单介绍了博主学习操作系统的心路历程,同时还给大家总结了一下当下流行的几种实时操作系统,以及在工程中OSAL应该如何设计。希望对大家有所启发和帮助。 文章目录…...
大数据的常用算法(分类、回归分析、聚类、关联规则、神经网络方法、web数据挖掘)
在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学…...
【数据结构】详解二叉树与堆与堆排序的关系
🌇个人主页:平凡的小苏 📚学习格言:别人可以拷贝我的模式,但不能拷贝我不断往前的激情 🛸C语言专栏:https://blog.csdn.net/vhhhbb/category_12174730.html 🚀数据结构专栏ÿ…...
【Pandas】数据分析入门
文章目录前言一、Pandas简介1.1 什么是Pandas1.2 Pandas应用二、Series结构2.1 Series简介2.2 基本使用三、DataFrame结构3.1 DataFrame简介3.2 基本使用四、Pandas-CSV4.1 CSV简介4.2 读取CSV文件4.3 数据处理五、数据清洗5.1 数据清洗的方法5.2 清洗案例总结前言 大家好&…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
