当前位置: 首页 > news >正文

使用TLS解决Docker API暴露2375端口的问题

问题起因

由于本人开发环境是在 Windows,开发完成后需要使用 Dockerfile 打包镜像,这个过程需要有一个 Docker 服务完成,Windows 安装 Docker 会影响到很多环境,我又不想本地开虚拟机使用 Docker,于是我就索性使用服务器上的 Docker,并放开了 2375 端口,这个是 Docker 默认 API 的端口,于是就可以很愉快的打包发布了。

但是没过几天,我就收到阿里云的告警,服务器负载长时间在 100%,服务器卡得不行,上服务器一看,不知道为什么多了几个没见过的 Docker 镜像以及很多不认识的容器,于是判断服务器应该是被黑客入侵了,被用来挖矿了,而入侵的入口就是 Docker 的 2375端口。

解决方法

解决方法最简单的就是尽量不要启用 API 功能,或者把默认端口改一下,但是这个也是只能解决一时的问题,后来查询资料,找到了使用 TLS 通信机制的解决方法。解决方法的过程如下:

  1. 生成一系列证书和文件
    # 创建一个文件夹,用于存放需要用到的证书等信息
    mkdir -p ~/docker-certs
    cd ~/docker-certs
    # 生成一个 CA(证书颁发机构)私钥,CA私钥用于为服务器或客户端证书生成签名。这个签名证明了该证书是由可信的 CA 颁发的。当服务器或客户端收到证书时,它会用 CA 的公钥来验证证书的签名。如果验证通过,意味着该证书确实是由该 CA 颁发的,确保了证书持有者的身份合法性。
    openssl genrsa -aes256 -out ca-key.pem 4096
    # 生成 key 的过程中,可能会出现要求输入 Enter pass phrase for ca-key.pem,这个相当于私钥的密码,能够进一步保证私钥的安全,哪怕别人获取到你的私钥,也不能直接使用,要输入密码。# 用 CA私钥自签名生成一个 CA 的证书,CA证书用于验证 CA 身份的合法性,要信任某个证书,关键就是要信任CA的证书。
    openssl req -new -x509 -days 365 -key ca-key.pem -sha256 -out ca.pem
    # 创建服务器端私钥和证书
    openssl genrsa -out server-key.pem 4096
    openssl req -new -key server-key.pem -out server.csr
    # CA 为服务端证书签名
    openssl x509 -req -days 365 -sha256 -in server.csr -CA ca.pem -CAkey ca-key.pem -CAcreateserial -out server-cert.pem
    # 创建客户端私钥和证书
    openssl genrsa -out key.pem 4096
    openssl req -new -key key.pem -out client.csr
    # 签署客户端证书
    openssl x509 -req -days 365 -sha256 -in client.csr -CA ca.pem -CAkey ca-key.pem -CAcreateserial -out cert.pem
    
  2. 移除不必要的 CSR 文件
    rm -v server.csr client.csr
    
  3. 设置权限
    chmod -v 0400 ca-key.pem key.pem server-key.pem
    chmod -v 0444 ca.pem server-cert.pem cert.pem
    
  4. 修改 /usr/lib/systemd/system/docker.service 文件
    vim /usr/lib/systemd/system/docker.service
    
    ExecStart 那改成:
    ExecStart=/usr/bin/dockerd \
    --tlsverify \
    --tlscacert=/root/docker-certs/ca.pem \
    --tlscert=/root/docker-certs/server-cert.pem \
    --tlskey=/root/docker-certs/server-key.pem \
    -H tcp://0.0.0.0:2376 -H unix://var/run/docker.sock \
    -H fd:// --containerd=/run/containerd/containerd.sock
    
  5. 重启 Docker 服务
    systemctl daemon-reload && systemctl restart docker
    
  6. 客户端所在机器找个地方存放 ca.pem、cert.pem、key.pem 三个文件,并且添加以下三个环境变量:
    DOCKER_HOST=tcp://你 docker 所在的IP地址:2376
    DOCKER_CERT_PATH=存放三个文件的地方
    DOCKER_TLS_VERIFY=1
    
  7. 然后测试即可

相关文章:

使用TLS解决Docker API暴露2375端口的问题

问题起因 由于本人开发环境是在 Windows,开发完成后需要使用 Dockerfile 打包镜像,这个过程需要有一个 Docker 服务完成,Windows 安装 Docker 会影响到很多环境,我又不想本地开虚拟机使用 Docker,于是我就索性使用服务…...

Pyspark中catalog的作用与常用方法

文章目录 Pyspark catalog用法catalog 介绍cache 缓存表uncache 清除缓存表cleanCache 清理所有缓存表createExternalTable 创建外部表currentDatabase 返回当前默认库tableExists 检查数据表是否存在,包含临时视图databaseExists 检查数据库是否存在dropGlobalTemp…...

聚焦2024数博会|与天空卫士一起探索AI与数据安全的融合应用

中国国际大数据产业博览会(简称数博会),是全球首个以大数据为主题的博览会,自2015年创办以来,经过多年的深厚沉淀,数博会已发展成为国际知名、引领前沿趋势的专业展示合作平台。 2024年8月28日至30日&#…...

实战docker第二天——cuda11.8,pytorch基础环境docker打包

在容器化环境中打包CUDA和PyTorch基础环境,可以将所有相关的软件依赖和配置封装在一个Docker镜像中。这种方法确保了在不同环境中运行应用程序时的一致性和可移植性: Docker:提供了容器化技术,通过将应用程序及其所有依赖打包在一…...

企业数字化转型的利器:RFID资产管理系统

在当今数字化时代,资产管理的效率和精确度对企业的成功至关重要。常达智能物联的RFID资产管理系统,凭借其高效、智能的管理方式,成为众多企业在数字化转型中的关键工具。 RFID资产管理系统的核心优势 一、精准资产定位与追踪 常达智能物联的…...

matplotlib中文乱码问题

在使用Matplotlib进行数据可视化的过程中,经常会遇到中文乱码的问题。显示乱码是由于编码问题导致的,而matplotlib 默认使用ASCII 编码,但是当使用pyplot时,是支持unicode编码的,只是默认字体是英文字体,导…...

提高开发效率的实用工具库VueUse

VueUse中文网:https://vueuse.nodejs.cn/ 使用方法 安装依赖包 npm i vueuse/core单页面使用(useThrottleFn举例) import { useThrottleFn } from "vueuse/core"; // 表单提交 const handleSubmit useThrottleFn(() > {// 具…...

【数据结构】你真的学会了二叉树了吗,来做一做二叉树的算法题及选择题

文章目录 1. 二叉树算法题1.1 单值二叉树1.2 相同的树1.3 另一棵树的子树1.4 二叉树的遍历1.5 二叉树的构建及遍历 2. 二叉树选择题3. 结语 1. 二叉树算法题 1.1 单值二叉树 https://leetcode.cn/problems/univalued-binary-tree/description/ 1.2 相同的树 https://leetco…...

压力测试知识总结

压力测试知识总结 引言 随着信息技术的飞速发展,软件系统在各个行业中的应用越来越广泛,其稳定性和可靠性成为用户关注的焦点。压力测试作为软件测试中的一种重要方法,对于确保软件在高负载环境下的稳定性和可靠性具有重要意义。本文将从压…...

@import导入样式以及scss变量应用与static目录

import函数:使用import语句可以导入外联样式表,import后跟需要导入的外联样式表的相对路径,用;表示语句结束。 static目录:就是无论你有没有在这个目录里用过,它都会进行编译打包 import函数应用:先在在项目里创建一个common 目录, 目录里面分别创建css,…...

分类中的语义一致性约束:助力模型优化

前言 这里介绍一篇笔者在去年ACL上发表的一篇文章,使用了空间语义约束来提高多模态分类的效果,类似的思路笔者也在视频描述等方向进行了尝试,也都取得了不错的效果。这种建模时对特征进行有意义的划分和约束对模型还是很有帮助的,…...

前端框架介绍

前端框架是Web开发中不可或缺的工具,它们通过提供结构化的开发方式、模块化组件、响应式设计以及高效的性能优化,极大地简化了Web应用程序的开发过程。以下是对当前主流及新兴前端框架的详细介绍,这些框架不仅涵盖了广泛的功能,还…...

java基础知识-JVM知识详解

文章目录 一、JVM内存结构二、常见垃圾回收算法1. 标记-清除算法(Mark-Sweep Algorithm)2. 标记-整理算法(Mark-Compact Algorithm)3. 复制算法(Copying Algorithm)4. 分代收集算法(Generational Collection)5. 增量收集算法(Incremental Collection)6. 并行收集算法…...

流动会场:以声学专利为核心的完美移动场地—轻空间

流动会场作为一种全新的活动场所选择,凭借其便捷的移动性与先进的声学设计,正逐渐成为各类演出、会议和文化活动的热门场地。其独特之处不仅在于搭建速度快、灵活性高,还在于其核心技术——声学专利的强大支持。 专利声学设计,打造…...

深度学习(一)-感知机+神经网络+激活函数

深度学习概述 深度学习的特点 优点 性能更好 不需要特征工程 在大数据样本下有更好的性能 能解决某些传统机器学习无法解决的问题 缺点 小数据样本下性能不如机器学习 模型复杂 可解释性弱 深度学习与传统机器学习相同点 深度学习、机器学习是同一问题不同的解决方法 …...

目标检测-YOLOv4

YOLOv4介绍 YOLOv4 是 YOLO 系列的第四个版本,继承了 YOLOv3 的高效性,并通过大量优化和改进,在目标检测任务中实现了更高的精度和速度。相比 YOLOv3,YOLOv4 在框架设计、特征提取、训练策略等方面进行了全面升级。它在保持实时检…...

一台笔记本电脑的硬件都有哪些以及对应的功能

一台笔记本电脑的硬件通常包括多个关键组件,这些组件共同协作,确保电脑的正常运行。以下是笔记本电脑的主要硬件及其功能: 1. 中央处理器(CPU) 功能:CPU 是电脑的“大脑”,负责处理所有的计算…...

【程序分享1】第一性原理计算 + 数据处理程序

【1】第一性原理计算 数据处理程序 SMATool 程序:VASP QE 零温 有限温度 拉伸、剪切、双轴、维氏硬度的计算 ElasTool v3.0 程序:材料弹性和机械性能的高效计算和可视化工具包 VELAS 程序:用于弹性各向异性可视化和分析 Phasego 程序…...

【数据结构】栈与队列OJ题(用队列实现栈)(用栈实现队列)

目录 1.用队列实现栈oj题 对比 一、初始化 二、出栈 三、入栈 四、取队头元素: 2.用栈实现队列 一、定义 二、入队列 三、出队列 四、队头 五、判空 前言:如果想了解什么是栈和队列请参考上一篇文章进来一起把【数据结构】的【栈与队列】狠…...

element-ui打包之后图标不显示,woff、ttf加载404

1、bug 起因 昨天在 vue 项目中编写 element-ui 的树形结构的表格,发现项目中无法生效,定位问题之后发现项目使用的 element-ui 的版本是 2.4.11 。看了官方最新版本是 2.15.14,然后得知 2.4.11 版本是不支持表格树形结构的。于是决定升级 el…...

探究零工市场小程序如何改变传统兼职模式

近年来,零工市场小程序正逐渐改变传统的兼职模式,为求职者和雇主提供了一个更为高效、便捷的平台。本文将深入探讨零工市场小程序如何影响传统兼职模式,以及它带来的优势和挑战。 一、背景与挑战 传统的兼职市场往往存在信息不对称的问题&am…...

MySQL数据库安装(详细)—>Mariadb的安装(day21)

该网盘链接有效期为7天,有需要评论区扣我: 通过网盘分享的文件:mariadb-10.3.7-winx64.msi 链接: https://pan.baidu.com/s/1-r_w3NuP8amhIEedmTkWsQ?pwd2ua7 提取码: 2ua7 1 双击打开安装软件 本次安装的是mariaDB,双击打开mar…...

微信小程序实践案例

参考视频: https://www.bilibili.com/video/BV1834y1676P/?p36&spm_id_frompageDriver&vd_sourceb604c19516c17da30b6b1abb6c4e7ec0 前期准备 1、新建三个页面 "pages": ["pages/home/home","pages/message/message",&quo…...

DataLoader使用

文章目录 一、认识dataloader二、DataLoader整合数据集三、使用DataLoader展示图片方法四、去除结尾不满足batch_size设值图片的展示 一、认识dataloader DataLoader 用于封装数据集,并提供批量加载数据的迭代器。它支持自动打乱数据、多线程数据加载等功能。datas…...

CSS学习11--版心和布局流程以及几种分布的例子

版心和布局流程 一、版心二、布局流程三、一列固定宽度且居中四、两列左窄右宽五、通栏平均分布型 一、版心 版心:是指网页主题内容所在的区域。一般在浏览器窗口水平居中位置,常见的宽度值为960px、980px、1000px、1200px等。 二、布局流程 为了提高…...

NetSuite AI 图生代码

去年的ChatGPT热潮期间,我们写过一篇文章说GTP辅助编程的事。 NetSuite GPT的辅助编程实践_如何打开netsuite: html script notes的视图-CSDN博客文章浏览阅读2.2k次,点赞4次,收藏3次。作为GPT综合症的一种表现,我们今朝来探究下…...

Java - BigDecimal计算中位数

日常开发中,如果使用数据库来直接查询一组数据的中位数,就比较简单,直接使用对应的函数就可以了,例如: SUBSTRING_INDEX(SUBSTRING_INDEX(GROUP_CONCAT(目标列名 ORDER BY 目标列名),,,Count(1)/2),,,-1) AS 目标列名_…...

Tensorflow2如何读取自制数据集并训练模型?-- Tensorflow自学笔记13

一. 如何自制数据集? 1. 目录结构 以下是自制数据集-手写数字集, 保存在目录 mnist_image_label 下 2. 数据存储格式 2.1. 目录mnist_train_jpeg_60000 下存放的是 60000张用于测试的手写数字 如 : 0_5.jpg, 表示编号为0,标签为5的图片 6_1.jpg, 表示…...

JVM系列(七) -对象的内存分配流程

一、摘要 在之前的文章中,我们介绍了类加载的过程、JVM 内存布局和对象的创建过程相关的知识。 本篇综合之前的知识,重点介绍一下对象的内存分配流程。 二、对象的内存分配原则 在之前的 JVM 内存结构布局的文章中,我们介绍到了 Java 堆的内存布局,由 年轻代 (Young Ge…...

Apache Ignite 在处理大规模数据时有哪些优势和局限性?

Apache Ignite 在处理大规模数据时的优势和局限性可以从以下几个方面进行分析: 优势 高性能:Ignite 利用内存计算的优势,实现了极高的读写性能,通过分布式架构,它可以将数据分散到多个节点上,从而实现了并…...